• Title/Summary/Keyword: Attenuation Measurement

Search Result 392, Processing Time 0.024 seconds

RET Modelling through the Phase Function Measurement at 12.5 GHz (12.5 GHz 대역 위상 함수 특성 측정을 통한 RET 모델링)

  • Han, Il-Tak;Bae, Seok-Hee;Jung, Myoung-Won;Pack, Jung-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.334-340
    • /
    • 2007
  • The prediction for vegetation attenuation using the RET model recommended in the ITU-R requires six RET input parameters. Among these, 4 parameters are related to the scattering characteristics of vegetation. To extract these parameters, two methods can be used. One is to extract the parameters by curve fitting of the measured vegetation-attenuation curve with the RET prediction model, and the other is to use the additional phase function measurement data. In the former method, fitting is quite complex and it does not result in the unique results in some cases. In addition, the extracted parameters lack the physical meaning as well. Thus, in this paper, the measurement method of phase function, and the method of extracting the RET model parameters which lead to more accurate and physically more meaningful results are presented. The extracted RET model parameters are also presented. The RET modeling method, measurement data, and the extracted RET model parameters presented in this paper were submitted to the ITU-R meeting in 2006, and adapted for ITU-R report and recommendation P.833.

A Wind Tunnel Study on Influences of ILS Tower on Wind Speed Measurement (계기착륙장치 타워가 풍속관측에 미치는 영향에 관한 풍동실험연구)

  • Choi, Cheol-Min;Kim, Kye-Hwan;Kim, Young-Chul;Kwon, Kybeom
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.513-517
    • /
    • 2013
  • In this study, it is first intended to simulate the vertical profile of atmospheric flow in a short wind tunnel. In order to accomplish it, proper devices are designed properly to reduce freestream flow momentum and it is confirmed from the measured velocity profile using hot-wire anemometer that momentum flux of the tunnel free stream can be reduced and desired atmospheric boundary can be created. Second, experiments are performed to identify influences of a surrounding structure measuring correct wind velocity by an anemometer, which are located nearby due to area limitation in actual airport and correction factors are proposed from experimental results. One of findings is that in order to limit the velocity attenuation due to a nearby structure under 10%, wind velocity measuring equipment should be installed at least 6 times of the structure height away from the structure of concern.

A Practical Method for Estimating High-Energy X-Ray Spectra Using the Iterative Perturbation Principle of Waggener

  • Iwasaki, Akira;Matsutani, Hideya;Kubota, Mamoru;Fujimori, Akira;Suzaki, Katsumasa;Abe, Yoshinao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.263-266
    • /
    • 2002
  • We have developed a practical method for estimating high-energy x-ray spectra using measured attenuation curves. This method is based on the iterative perturbation technique proposed by Waggener et al. The principle is to minimize the difference between the measured and calculated transmission curves. The experimental study was made using 4 MV, 10 MV, and 15 MV x-ray beams. It has been found that the spectrum varies strongly with the off-axis distance.

  • PDF

Sound Propagation in Circular Duct Lined with Elastic Porous Noise Control Materials (소음제어용 탄성다공물질이 대어진 원형덕트 내의 음파전달)

  • 정인화;강연준
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.302-309
    • /
    • 1999
  • In this paper, a circular lined-duct is modeled by using an axisymmetric foam finite element, which is based on elastic porous material theory of Biot. For various thicknesses of three kinds of lining materials, finite element predictions are compared with measurement results and Morse's analytical results. While the analytical model has larger error as the lining becomes thicker, results of the present model have a good agreement with experimental results for all the thicknesses considered here. It has also been found that constraining the axial motion on the circumferential surface of the lining enhances sound attenuation at low freqneucies.

  • PDF

A new dead-time determination method for gamma-ray detectors using attenuation law

  • Akyurek, T.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4093-4097
    • /
    • 2021
  • This study presents a new dead-time measurement method using the gamma attenuation law and generalized dead-time models for nuclear gamma-ray detectors. The dead-time of the NaI(Tl) detection system was obtained to validate the new dead-time determination method using very thin lead and polyethylene absorbers. Non-paralyzing dead-time was found to be 8.39 ㎲, and paralyzing dead-time was found to be 8.35 ㎲ using lead absorber for NaI(Tl) scintillator detection system. These dead-time values are consistent with the previously reported dead-time values for scintillator detection systems. The gamma build-up factor's contribution to the dead-time was neglected because a very thin material was used.

In-Line Monitoring the Dispersion of Highly Energetic Material Simulant (고에너지 물질 시뮬란트의 분산도의 In-Line 모니터링)

  • Lee, Sangmook;Hong, In-Kwon;Ahn, Youngjoon;Lee, Jae Wook
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.272-277
    • /
    • 2014
  • We studied in-line monitoring the dispersion of highly energetic material simulant by a twin screw extruder having a high temperature ultrasonic system. The simulant suspension system consisted of ethylene vinyl acetate and Dechlorane plus 25 as binder and filler, respectively. With increasing filling fraction, the ultrasonic velocity was not changed but the attenuation linearly decreased. It was possible to estimate the solid fraction of well dispersed suspension system by measuring ultrasonic attenuation. The ultrasonic attenuation of samples filled over 60 v% approached straight line with increasing filling fraction when the samples was extruded repeatedly. It was due to the enhanced dispersion of solid particles in the suspension system. It was believed that the degree of dispersion and filling fraction could be obtained by combination of on-line measurement like ultrasonic attenuation and off-line analysis like TGA and SEM with image analyzer.

UHF Sensor Location Optimization for Partial Discharge Signals Detection Method (UHF 센서 위치 최적화로 부분방전 신호 검출 방법)

  • Choi, Mun-Gyu;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.409-413
    • /
    • 2014
  • GIS partial discharge that occurred in the UHF band signal is effectively detected by the method to IEC60270 5pc the apparent minimum discharge can be detected over the GIS arrangement of the sensor interior and exterior of the UHF in accordance with the optimized position signal by considering the damping ratio is selected so that the signals can be obtained to be mounted. 362kV, 800kV GIS is installed on the internal and external sensors are UHF band signal attenuation is set by measuring the reference value, but the operation, 170kV case 362kV, 800kV on the basis of the measurement data and to be installed and operated. When 170kV per 1Bay by installing the built-in sensor 1 for detecting a partial discharge signal, But, GIS signal attenuation is large in the case of an internal partial discharge signal is not detected in some cases. Where the attenuation is great UHF signal of the sensor by increasing the quantity of partial discharge signals were acquired to allow relocation. The greater the spacing between the sensor and the sensor is applied simplifies the installation and reduces the cost in terms of maintenance of appropriate optimal position is calculated to detect the partial discharge signal is needed. Thus 170kV GIS signal power attenuation of a partial discharge by measuring the UHF sensor, and by relocating the proper position is calculated in accordance with the sensor signal decay rate and minimize the error of omission in detecting a partial discharge signal was optimized.

Advances in Ultrasonic Testing of Austenitic Stainless Steel Welds

  • Moysan, J.;Ploix, M.A.;Corneloup, G.;Guy, P.;Guerjouma, R. El;Chassignole, B.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2008
  • A precise description of the material is a key point to obtain reliable results when using wave propagation codes. In the case of multipass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Two main advances are presented in the following. The first advance is a model which describes the anisotropy resulting from the metal solidification and thus the model reproduces an anisotropy that is correlated with the grain orientation. The model is called MINA for modelling anisotropy from Notebook of Arc welding. With this kind of material model1ing a good description of the behaviour of the wave propagation is obtained, such as beam deviation or even beam division. But another advance is also necessary to have a good amplitude prediction: a good quantification of the attenuation, particularly due to grain scattering, is also required as far as attenuation exhibits a strong anisotropic behaviour too. Measurement of attenuation is difficult to achieve in anisotropic materials. An experimental approach has been based both on the decomposition of experimental beams into plane waves angular spectra and on the propagation modelling through the anisotropic material via transmission coefficients computed in generally triclinic case. Various examples of results are showed and also some prospects to continue refining numerical simulation of wave propagation.

Impact Characteristics of Multi-Density Insoles for DM Shoes (당뇨화 다밀도 안창의 충격특성)

  • 금영광;정임숙;강성재;김영길;김명웅;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • Impact characteristics of six DM(Diabetes Mellitus) shoe insole materials (Podian, Plastazote black, Plastazote white, Flexible PU foam, Podialene 200 blue and Podia flex) and three multi-density insoles (AP, OS and PW insoles) were determined in the present study, using a self-designed impact measurement system. The coefficient of restitution, the median frequency and the attenuation index were calculated for each material, based on impact forces and linear accelerations. Podian revealed the superiority in the coefficient of restitution and the attenuation index. The median frequency of the Flexible PU foam was the smallest. Results also showed that the heel region was the most impact-attenuated among other areas in the insole. OS insole showed the better characteristics in the coefficient of restitution and the median frequency. but there was no significant difference in the attenuation index. Similar impact characteristics were found in all areas in PW insole. since it was basically of the same dual-density polyurethane.

A Modified Generalized Chebyshev LPF Design with Improved Stopband (개선된 저지 대역을 갖는 변형된 일반화된 체비셰프 저역 통과 필터 설계)

  • Kim In-Seon;Kim Kwang-Soo;Lim Jong-Sik;Ahn Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1155-1163
    • /
    • 2005
  • In this paper, we suggest the new method to considerably enlarge stopband without increment of filter sire and loss. The proposed low pass filter looks like outward configuration with the published Modified Generalized Chebyshev (MGC) low pass filter, but the element values completely differ from each other. The published MGC fille, had been considered only the second attenuation pole to reject(or suppress) the harmonic, whereas the stopband of the proposed filter is superior to the published MGC filter because not only the second attenuation pole but also the third harmonic of the first attenuation pole is made use of profitably. We fabricate a low pass filter according to the proposed theory. From the measurement of the fabricated filter, we can confirm that the stopband of the proposed filter is reached above 4 times wider than the conventional Generalized Chebyshev(GC) filter and above 1.7 times wider than the published MGC filter.