Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.3.272

In-Line Monitoring the Dispersion of Highly Energetic Material Simulant  

Lee, Sangmook (Division of Chemical Engineering, Dankook University)
Hong, In-Kwon (Division of Chemical Engineering, Dankook University)
Ahn, Youngjoon (Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Jae Wook (Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University)
Publication Information
Polymer(Korea) / v.38, no.3, 2014 , pp. 272-277 More about this Journal
Abstract
We studied in-line monitoring the dispersion of highly energetic material simulant by a twin screw extruder having a high temperature ultrasonic system. The simulant suspension system consisted of ethylene vinyl acetate and Dechlorane plus 25 as binder and filler, respectively. With increasing filling fraction, the ultrasonic velocity was not changed but the attenuation linearly decreased. It was possible to estimate the solid fraction of well dispersed suspension system by measuring ultrasonic attenuation. The ultrasonic attenuation of samples filled over 60 v% approached straight line with increasing filling fraction when the samples was extruded repeatedly. It was due to the enhanced dispersion of solid particles in the suspension system. It was believed that the degree of dispersion and filling fraction could be obtained by combination of on-line measurement like ultrasonic attenuation and off-line analysis like TGA and SEM with image analyzer.
Keywords
simulant; energetic; concentrated; in-line monitoring; dispersion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Shen, R. Edwards, C. L. Thomas, and A. T. Bur, SPE ANTEC, 44, 2076 (1998).
2 C. Verdier, P.-Y. Longin, and M. Piau, Rheol. Acta, 37, 234 (1998).   DOI
3 H. Wang, C.-K. Jen, K. T. Nguyen, and M. Viens, Polym. Eng. Sci., 2, 363 (1997).
4 E. C. Brown, T. L. D. Collins, A. J. Dawson, P. Olley, and P. D. Coates, SPE ANTEC, 44, 335 (1998).
5 L. Piche, SPE ANTEC, 44, 3617 (1998).
6 L. Erwin and J. Dohner, Polym. Eng. Sci., 16, 1277 (1984).
7 B. Bridge and K. H. Cheng, J. Mater. Sci. Lett., 6, 219 (1987).   DOI
8 R. Gendron, M. M. Dumoulin, J. Tatibouet, and L. Piche, SPE ANTEC, 39, 2256 (1993).
9 J. Tatibout and M. A. Huneault, Int. Polym. Proc. XVII, 1, 49 (2002).
10 A. Sahnoune, F. Massines, and L. Pich, J. Polym. Sci., 2, 341 (1996).
11 L. Hader, J. Tatibout, A. Lafaurie, and L. Ferry, J. Phys. - Condens. Mat., 14, 4943 (2002).   DOI   ScienceOn
12 G. D. Smith, E. C. Brown, D. Barnwell, K. Martin, and P. D. Coates, Plast. Rubber Compos., 32, 167 (2003).   DOI   ScienceOn
13 G. D. Smith, E. C. Brown, D. Barnwell, K. Martin, and P. D. Coates, Plast. Rubber Compos., 32, 248 (2003).   DOI   ScienceOn
14 G. D. Smith, E. C. Brown, and P. D. Coates, SPE Tech Papers, XLVII, 3105 (2001).
15 B. M. Mutagahywa and D. A. Hemsley, Plast. Rubber Proc. Appl., 5, 219 (1985).
16 M. Pello, Plast. Rubber Compos., 29, 207 (2000).   DOI   ScienceOn
17 P. P. Sukhanov, A. E. Zaikin, and V. S. Minkin, Int. Polym. Sci. Tech., 16, T15 (1989).
18 S. Okuda and K. Fujisawa, Proceedings Mechanical Behavior of Materials Conference VI, Pergamon Press, Kyoto, Japan 1991, 671 (1992).
19 Y. Suetsugu, Int. Polym. Process., 3, 184 (1990).
20 R. Gendron and D. Binet, J. Vinyl Addit. Techn., 1, 54 (1998).
21 A. Sahnoune and L. Pich, J. Non-cryst. Solids, 235, 664 (1998).
22 J. W. Ess and P. R. Hornsby, Plast. Rubber Proc. Appl., 8, 147 (1987).
23 Z. Sun, C.-K. Jen, J. Yan, and M.-Y. Chen, Polym. Eng. Sci., 45, 764 (2005).   DOI   ScienceOn