• Title/Summary/Keyword: Atomic Force Microscope (AFM)

Search Result 530, Processing Time 0.027 seconds

Analysis and Control f Contact Mode AFM (접촉모드 AFM의 시스템 분석 및 제어)

  • 정회원;심종엽;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • Recently, scientists introduced a new type of microscope capable of investigating nonconducting surfaces in an atomic scale, which is called AFM (Atomic Force Microscope). It was an innovative attempt to overcome the limitation of STM (Scanning Tunnelling Microscope) which has been able to obtain the image of conducting surfaces. Surfaces of samples are imaged with atomic resolution. The AFM is an imaging tool or a profiler with unprecedented 3-D resolution for various surface types. The AFM technology, however, leaves a lot of room for improvement due to its delicate and fragile probing mechanism. One of the room for improvements is gap control between probe tip and sample surface. Distance between probe tip and sample surface must be kept in below one Angtrom in order to measure the sample surface in Angstrom resolution. In this paper, AFM system modeling, experimental system identification and control scheme based on system identification are performed and finally sample surface is measured by home-built AFM with such a control scheme.

  • PDF

Precision measurement of a laser micro-processing surface using a hybrid type of AFM/SCM (하이브리드형 AFM/SCM을 이용한 레이저 미세 가공 표면 측정)

  • Kim, Jong-Bae;Kim, Kyeong-Ho;Bae, Han-Sung;Nam, Gi-Jung;Lee, Dae-Chul;Seo, Woon-Hak
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.123-127
    • /
    • 2006
  • Hybrid type microscope with a Scanning Confocal Microscope (SCM) and a shear-force Atomic Force Microscope (AFM) is suggested and preliminarily studied. A image of $120{\times}120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a X-axis and Y-axis are 1kHz and 1Hz, respectively. Shear-force AFM is able to correctly measure the hight and width of sample with a resolution 8nm. However, the scan speed is slow and it is difficult to distinguish a surface composed of different kinds of materials. We have carried out the measurement of total image of a sample by SCM and an exact analysis of each image by shear-force AFM.

  • PDF

Two Dimensional Atomic Force Microscope (서브나노급 정밀도의 2 차원 원자현미경 개발)

  • Lee, Dong-Yeon;Gweon, Dae-Gab
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1778-1783
    • /
    • 2008
  • A compact and two-dimensional atomic force microscope (AFM) using an orthogonal sample scanner, a calibrated homodyne laser interferometer and a commercial AFM head was developed for use in the nanometrology field. The x and y position of the sample with respect to the tip are acquired by using the laser interferometer in the open-loop state, when each z data point of the AFM head is taken. The sample scanner which has a motion amplifying mechanism was designed to move a sample up to $100{\times}100{\mu}m^2$ in orthogonal way, which means less crosstalk between axes. Moreover, the rotational errors between axes are measured to ensure the accuracy of the calibrated AFM within the full scanning range. The conventional homodyne laser interferometer was used to measure the x and y displacements of the sample and compensated via an X-ray interferometer to reduce the nonlinearity of the optical interferometer. The repeatability of the calibrated AFM was measured to sub-nm within a few hundred nm scanning range.

  • PDF

Theoretical Study of Scanning Probe Microscope Images of VTe2

  • Park, Sung-Soo;Lee, Jee-Young;Lee, Wang-Ro;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.81-84
    • /
    • 2007
  • Ab initio periodic Hartree-Fock calculations with the full potential and minimum basis set are applied to interpretation of scanning tunneling microscope (STM) and atomic force microscope (AFM) images on 1TVTe2. Our results show that the simulated STM image shows asymmetry while the simulated AFM image shows the circular electron densities at the bright spots without asymmetry of electron density to agree with the experimental AFM image. The bright spots of both the STM and AFM images of VTe2 are associated with the surface Te atoms, while the patterns of bright spots of STM and AFM images are different.

Investigation of Organic Fouling with AFM(Atomic Force Microscope) in Reverse Osmosis Membrane and Forward Osmosis Membrane (FO와 RO막에서 AFM(Atomic Force Microscope)을 이용한 유기 막 오염 연구)

  • Kuk, Ji-Hoon;Lee, Sang-Youp;Hong, Seung-Kwan
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.102.1-102.1
    • /
    • 2010
  • 대체수자원 중 막여과 기술에 대한 관심이 지속적으로 높아지고 있다. 하지만, 이러한 막여과 기술에는 fouling이 발생시 효율저감, flux저감, 소모에너지 증대 등 문제점이 발생한다. 이러한 fouling저감을 위해 막 표면특성분석을 통한 기초연구가 필요하다고 보고 이 연구를 진행하였다. AFM을 이용하여 CML입자와 막의 상호작용을 통해 초기 막오염 경향을 예측할 수 있다.

  • PDF

Wear Characteristics of Atomic force Microscope Tip (Atomic Force Microscope Tip 의 마멸특성에 관한 연구)

  • 정구현;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.189-195
    • /
    • 2003
  • Atomic Force Microscope (AFM) has been widely used in micro/nano-scale studies and applications for. the last few decade. In this work, wear characteristics of silicon-based AFM tip was investigated. AFM tip shape was observed using a high resolution SEM and the wear coefficient was approximately calculated based on Archard's wear equation. It was shown that the wear coefficient of silicon and silicon nitride were in the range of ${10}^{-1}$~${10}^{-3}$ and ${10}^{-3}$~${10}^{-4}$, respectively. Also, the effect of relative humidity and sliding distance on adhesion-induced tip wear was discussed. It was found that the tip wear has more severe for harder test materials. Finally, the probable wear mechanism was analyzed from the adhesive and abrasive interaction point of view.

Analysis of Dynamic Behavior of Piezoelectric Atomic Force Microscope Cantilever (압전형 AFM 외팔보의 동적거동 해석)

  • 하성규;박성균;김영호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.187-194
    • /
    • 2002
  • A seven-port impedance and admittance matrices of multilayered piezoelectric beam are derived for the analysis of piezoelectric AFM ( atomic force microscope) cantilever that is partially covered by the piezoelectric layer. The variational principle is used for deriving the extensional and flexural motional equations and the conjugate parameters. Overall impedance matrix of AFM cantilever can be obtained by combining two impedance matrices of the covered and the non-covered. she resonance and antiresonance frequencies and the effective electromechanical coupling factors are calculated using the derived matrices. The results and the three dimensional finite element solutions are compared with the experimental results in other publication.