• 제목/요약/키워드: Atmospheric methane

검색결과 120건 처리시간 0.028초

Oxychlorination of methane over FeOx/CeO2 catalysts

  • Kim, Jeongeun;Ryou, Youngseok;Hwang, Gyohyun;Bang, Jungup;Jung, Jongwook;Bang, Yongju;Kim, Do Heui
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2185-2190
    • /
    • 2018
  • Methane activation through oxychlorination is in the spotlight due to the relatively mild reaction conditions at atmospheric pressure and in the temperature range of $450-550^{\circ}C$. Although $CeO_2$ is known to exhibit good activity for methane oxychlorination, significant amounts of by-products such as $CO_2$, CO and carbon deposits are produced during the reaction over $CeO_2$. We investigated the effect of iron in $FeO_x/CeO_2$ catalysts on methane oxychlorination. $FeO_x/CeO_2$ with 3 wt% iron shows the maximum yield at $510^{\circ}C$ with 23% conversion of methane and 65% selectivity of chloromethane. XRD and $H_2$ TPR results indicate that iron-cerium solid solution was formed, resulting in the production of more easily reduced cerium oxide and the suppression of catalysts sintering during the reaction. Furthermore, the selectivity of by-products decreased more significantly over $FeO_x/CeO_2$ than cerium oxide, which can be attributed to the facilitation of HCl oxidation arising from the enhanced reducibility of the former sample.

메타게놈 분석을 이용한 돈분뇨 처리에 의한 논토양에서 메탄대사에 미치는 영향 조사 (Metagenomics analysis of methane metabolisms in manure fertilized paddy soil)

  • 응우옌 기앙 손;호 투 궝;이지훈;운노타쯔야
    • 미생물학회지
    • /
    • 제52권2호
    • /
    • pp.157-165
    • /
    • 2016
  • 침수된 논토양에서는 메탄생성균이 벼 줄기를 타고 올라오는 메탄을 생성하는 것으로 알려져 있고, 그래서 논토양은 대기 메탄의 인위적인 발생원 중 하나로 알려져 있다. 또한 (분뇨)거름을 사용하면 벼로부터 메탄 배출이 증가하는 것으로 연구 결과 알려져 있다. 어떠한 기작으로 (분뇨)거름이 메탄 배출을 증가시키는지 알아보기 위하여, 무기비료를 사용한 논토양(NPK)과 돈분뇨를 처리한 논토양(PIG)에서의 미생물의 메타게놈에 대해 비교분석을 수행하였다. 미생물군집 분류 분석 결과, 메탄생성균과 메탄영양균, 메틸영양균, 초산생성균(acetogen)이 NPK에서 보다 PIG에서 더 풍부하였다. 더욱이 BLAST 비교 분석 결과 탄수화물 대사 기능유전자가 PIG에 더 풍부하였다. 메탄 대사와 관련된 유전자 중에서 메틸-조효소-M-환원효소(mcrB/mcrD/mcrG)와 트리메틸아민-코리노이드 단백질 Co-메틸전달효소(mttB)가 PIG 시료에 더 풍부하였다. 그와는 상대적으로, 트리메틸아민 모노산소첨가효소(tmm)와 포스포세린/호모세린 인산전달효소(thrH) 같은 메탄 배출을 하향 조절하는 유전자는 NPK 시료에서 더 관찰되었다. 메탄영양과 관련된 유전자(pmoB/amoB/mxaJ)들 또한 PIG에서 더 풍부하게 발견되었다. 메탄 배출과 메탄 산화와 관련된 핵심 유전자들을 환경에서 확인함으로써, (분뇨)거름 사용에 의해 벼로부터 메탄 배출이 증가하는 기작에 대해 기초적인 정보를 얻을 수 있을 것이다. 본 연구에 제시된 내용을 통해 돈분료거름을 처리한 논토양 내 미생물의 분자적 변이를 알 수 있었다.

The Composition of Non-methane Hydrocarbons Determined from a Tunnel of Seoul During Winter 2000

  • Kwangsam Na;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제16권E2호
    • /
    • pp.69-77
    • /
    • 2000
  • Measurements of non-methane hydrocarbons (NMHC) were carried out in the Sangdo tunnel and on a nearby roadway in Seoul during the during the periods of heavy(low speed with ∼20km h(sup)-1) and light(high speed with ∼60kmh(sup)-1) traffic in February 2000. In the tunnel, the total NMHC levels during the heavy traffic period were higher than those during the light traffic period by a factor of 2. This was due to the increase of emissions at the low vehicle speed period and the higher dilution effect derived from faster flow of tunnel air at the high vehicle speed period. The average total NMHC concentration in the tunnel was 1.7 times as high as that on the roadway. The species with the highest concentration in the tunnel was ethylene(50.1 ppb), followed by n-butane(34.1 ppb) and propane (21.9 ppb). The concentration ranking in the tunnel was generally in good agreement with that on the roadway, suggesting that the NMHC compositions in the tunnel and on the nearby roadway were primarily determined by vehicle exhausts. However, the NMHC compositions in the Sangdo tunnel do not agree well with other foreign study results, reflecting that the characteristics of vehicle exhausts of Seoul is different from those of other cities. The most prominent difference between this study and other studies is the high mass fractions of butanes and propane. It was be attributed to the wide use of butane-fueled vehicles.

  • PDF

전이금속이 담지된 세리아의 메탄 산화 반응에 대한 연구 (A Study of Methane Oxidation over Transition Metal (TM)/CeO2 (TM=Ni, Co, Cu, Fe))

  • 안기용;정용재;이종호
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.346-352
    • /
    • 2012
  • The properties of methane oxidation were studied in this research over transition metal containing $CeO_2$ (TM/$CeO_2$, TM=Ni, Co, Cu, Fe) with TM content of 5 wt. % at atmospheric pressure. The characteristics of catalysts were investigated by various characterization techniques, including XRD, GC, SEM and EPMA analyses. The catalytic tests were carried out in a fixed Rmix ratio of 1.5 ($CH_4/O_2$) in a fixed-bed reactor operating isothermally at atmospheric pressure. Only the Ni/$CeO_2$ catalysts showed syngas production above $400^{\circ}C$ via typical partial oxidation reaction whereas other catalysts induced complete oxidation resulting in the production of $CO_2$ and $H_2O$ in whole reaction temperature range. From the quantitative analysis on carbon deposition after catalytic tests, Cu/$CeO_2$ was found to show the highest resistance on carbon deposition. Therefore Cu can be proposed as an efficient catalyst element which can be combined with a conventional Ni-based SOFC anode to enhance the carbon tolerance.

NaCl/ZnO/α-Al2O3 촉매상에서 메탄의 Oxidative Coupling의 속도론적 고찰 (Kinetics of Oxidative Coupling of Methane over NaCl/ZnO/α-Al2O3 Catalyst)

  • 김상채;서호준;선우창신;유의연
    • 공업화학
    • /
    • 제3권2호
    • /
    • pp.256-265
    • /
    • 1992
  • NaCl(30wt%)/ZnO(60wt%)/${\alpha}-Al_2O_3$ 촉매상에서 메탄의 oxidative coupling 반응의 속도식을 연구하여 활성 산소종에 관하여 고찰하였다. 반응온도 $650^{\circ}C$에서 $750^{\circ}C$까지 메탄의 전화율 10%미만의 범위에서 메탄과 산소의 분압을 변화시켜 가면서 메탄의 전환속도를 측정하여 속도식을 검증하였다. 제안된 메틸라디칼의 생성반응은 Langmuir-Hinshelwood형 반응기구를 따른다. 촉매표면의 서로 다른 활성점에 흡착된 메탄분자와 산소분자가 반응하여 메틸라디칼이 생성되는 반응이 속도결정단계이며, 이때 활성화 에너지는 약 39kcal/mol이었다. 메탄의 C-H 결합의 해리에 관여하는 산소종은 표면상의 이원자 산소인 $O{_2}{^{2-}}$$O_2{^-}$로 제시할 수 있었다.

  • PDF

Effect of Mn-addition on Catalytic Activity of $Mn/In_2O_3$ in Methane Activation

  • Park, Jong Sik;Jun Jong Ho;Kim Yong Rok;Lee Sung Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1058-1064
    • /
    • 1994
  • Mn/In$_2O_3$ systems with a variety of Mn mol${\%}$ were prepared to investigate the effect of Mn-addition on the catalytic activity of Mn/In$_2O_3$ in the oxidative coupling of methane. The oxidative coupling of methane was examined on pure In$_2O_3$ and Mn/In$_2O_3$ catalysts by cofeeding gaseous methane and oxygen under atmospheric pressure between 650 and 830 $^{\circ}C$. Although pure In$_2O_3$ showed no C$_2$ selectivity, both the C$_2$ yield and the C$_2$ selectivity were increased by Mn-doping. The 5.1 mol${\%}$ Mn-doped In$_2O_3$ catalyst showed the best C$_2$ yield of 2.6${\%}$ with a selectivity of 19.1${\%}$. The electrical conductivities of pure and Mn-doped In$_2O_3$ systems were measured in the temperature range of 25 to 100 $^{\circ}C$ at PO$_2$'S of 1 ${\times}$ 10$^{-7}$ to 1 ${\times}$ 10 $^{-1}$ atm. The electrical conductivities were decreased with increasing Mn mol${\%}$ and PO$_2$, indicating the specimens to be n-type semiconductors. Electrons serve as the carriers and manganese can act as an electron acceptor in the specimens. Manganese ions doped in In$_2O_3$ inhibit the ionization of neutral interstitial indium or the transfer of lattice indium to interstitial sites and increase the formation of oxygen vacancy, giving rise to the increase of the concentration of active oxygen ion on the surface. It is suggested that the active oxygen species adsorbed on oxygen vacancies are responsible for the activation of methane.

신장 아크 반응기를 이용한 메탄 CO2 개질반응에서 방전 전압-전류특성의 영향 (Influence of Discharge Voltage-Current Characteristics on CO2 Reforming of Methane using an Elongated Arc Reactor)

  • 김관태;황나경;이재옥;이대훈;허민;송영훈
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.683-689
    • /
    • 2010
  • Reforming of methane with carbon dioxide has been carried out using a bipolar pulse driven elongated arc reactor operating at atmospheric pressure and non-equilibrium regime. This plasma reactor is driven by two kinds of power supply, characterized by different voltage-current characteristics under the same operating power and frequency. Varying the $CO_2/CH_4$ ratio and the discharge power, the conversion rate, yield, and reforming efficiency for the two power supplies are investigated in conjunction with the static and dynamic behaviors of voltage and current. It is found that not only the values of voltage and current but also their shapes give an influence on the reforming performances. Finally, a better electrical operation regime for the efficient plasma reforming is proposed based on the relationship between the voltage-current characteristics and the reforming performance.

Investigation of Coke Formation in Dry Methane Reforming over Nickel-based Monolithic Catalysts

  • Pornruangsakun, Pongsakorn;Tungkamani, Sabaithip;Ratana, Tanakorn;Phongaksorn, Monrudee;Sornchamni, Thana
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.31-38
    • /
    • 2015
  • Coking accumulations via dry methane reforming (DMR) over 10NAM monolithic catalyst and pelletized catalyst was investigated. 10NAM catalyst was synthesized and coated on a wall of monolithic reactor. Pelletized catalyst of 10NAM was also prepared for the comparison. Consequently, catalyst was characterized by BET, $H_2-TPR$ and $H_2-TPD$. The catalytic reaction was undergone at $600^{\circ}C$ under atmospheric pressure and $CH_4$ to $CO_2$ reactant ratio of 1:2. The coking formation over spent catalyst was then carried out in the hydrogen flow using temperature programmed technique (TPH). According to the results, DMR over 10NAM monolithic catalyst exhibits a minimized coking formation comparing to the use of pelletized catalyst. This could be attributed to a prominent heat transfer efficiency of the monolithic catalyst.

THE PARTIAL COMBUSTION OF METHANE TO SYNGAS OVER PRECIOUS METALS AND NICKEL CATALYSTS SUPPORTED ON -γAL2O3 AND CEO2

  • Seo, Ho-Joon
    • Environmental Engineering Research
    • /
    • 제10권3호
    • /
    • pp.131-137
    • /
    • 2005
  • The catalytic activity of precious metals(Rh, Pd, Pt) and nickel catalysts supported on ${\gamma}-Al_2O_3\;and\;CeO_2$ in the partial combustion of methane(PCM) to syngas was investigated based on the product distribution in a fixed bed now reactor under atmospheric condition and also on analysis results by SEM, XPS, TPD, BET, and XRD. The activity of the catalysts based on the syngas yield increased in the sequence $Rh(5)/CeO_2{\geq}Ni(5)/CeO_2>>Rh(5)/Al_2O_3>Pd(5)/Al_2O_3>Ni(5)/Al_2O_3$. Compared to the precious catalysts, the syngas yield and stability of the $Ni(5)/CeO_2$ catalyst were almost similar to $(5)/CeO_2$ catalyst, and superior to these of any other catalysts. The syngas yield of $Ni(5)/CeO_2$ catalyst was 90.66% at 1023 K. It could be suggested to be the redox cycle of the successive reaction and formation of active site, $Ni^{2-}$ and the lattice oxygen, $O^{2-}$ produced due to reduction of $Ce^{4-}$ to $Ce^{3-}$.

미래 기후 변화 시나리오에 따른 환북극의 변화 (Projection of Circum-Arctic Features Under Climate Change)

  • 이지연;조미현;고영대;김백민;정지훈
    • 대기
    • /
    • 제28권4호
    • /
    • pp.393-402
    • /
    • 2018
  • This study investigated future changes in the Arctic permafrost features and related biogeochemical alterations under global warming. The Community Land Model (CLM) with biogeochemistry (BGC) was run for the period 2005 to 2099 with projected future climate based on the Special Report on Emissions Scenarios (SRES) A2 scenario. Under global warming, over the Arctic land except for the permafrost region, the rise in soil temperature led to an increase in soil liquid and decrease in soil ice. Also, the Arctic ground obtained carbon dioxide from the atmosphere due to the increase in photosynthesis of vegetation. On the other hand, over the permafrost region, the microbial respiration was increased due to thawing permafrost, resulting in increased carbon dioxide emissions. Methane emissions associated with total water storage have increased over most of Arctic land, especially in the permafrost region. Methane releases were predicted to be greatly increased especially near the rivers and lakes associated with an increased chance of flooding. In conclusion, at the end of $21^{st}$ century, except for permafrost region, the Arctic ground is projected to be the sink of carbon dioxide, and only permafrost region the source of carbon dioxide. This study suggests that thawing permafrost can further to accelerate global warming significantly.