• 제목/요약/키워드: Atmospheric Effect

검색결과 1,592건 처리시간 0.034초

수업방안이 중학생들의 대기압 개념 변화에 미치는 영향 (The Effects of Teaching Methods in the Class on Conceptual Change of Atmospheric Pressure in Middle School Students)

  • 김종희;배주현;이용섭;김상달
    • 한국지구과학회:학술대회논문집
    • /
    • 한국지구과학회 2004년도 춘계학술발표회 논문집
    • /
    • pp.2-12
    • /
    • 2004
  • 본 연구에서는 현행 제7차 교육과정의 중학교 과학교과에서 제시된 대기압 개념을 분석하여 무게의 측면으로 대기압을 설명하는 교과서를 이용한 수업(수업방안 A)과 기체 분자운동과 무게의 양쪽 측면에서 설명하는 교과서를 이용한 수업(수업방안 B)의 두 가지 수업방안을 선정한 후 수업방안이 중학생들의 대기압 개념변화에 미치는 영향에 대하여 알아보았다. 이를 위하여 중학교 3학년 4개 학급을 대상으로 2개 학급씩 나누어 각각 수업을 실시하였다. 이 때 수업 전-후에 나타나는 학업 성취도와 대기압의 개념변화를 조사해본 결과는 다음과 같다. 첫째, 학업 성취도에 미치는 효과는 ‘수업방안 B'가 ‘수업방안 A’에 비해서 효과가 있는 것으로 나타났다. 둘째, 개념변화에 미치는 효과는 개념 검사의 사후 점수를 각 하위척도별로 효과를 검증한 결과, 개념의 요소 4개 중 3개의 요소인 ‘대기압이 작용하는 원리’와 ‘대기압이 작용하는 방향과 이유’, ‘지표면의 온도 상승에 따른 기압 변화와 그 이유’에서는 개념 변화에 유의미한 향상이 있는 것으로 나타났으나 ‘고도에 따른 대기압의 분포와 그 이유’에서는 개념 변화에 있어 유사한 것으로 나타났다. 셋째, 대기압 개념의 올바른 수업방안으로는 대기압을 기체 분자 운동론의 입장에서 정의하고 높이에 따른 대기압의 크기 분포는 공기의 무게로 정의한 것과 결과가 같게 나타남을 강조할 필요가 있다.

  • PDF

Atmospheric Pressure Micro Plasma Sources

  • Brown, Ian
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.384-390
    • /
    • 2001
  • The hollow cathode discharge is a kind of plasma formation scheme in which plasma is formed inside a hollow structure, the cathode, with current to a nearby anode of arbitrary shape. In this scheme, electrons reflex radially within the hollow cathode, establishing an efficient ionization mechanism for gas within the cavity. An existence condition for the hollow cathode effect is that the electron mean-free-path for ionization is of the order of the cavity radius. Thus the size of this kind of plasma source must decrease as the gas pressure is increased. In fact, the hollow cathode effect can occur even at atmospheric pressure for cathode diameters of order 10-100 $\mu\textrm{m}$. That is, the "natural" operating pressure regime for a "micro hollow cathode discharge" is atmospheric pressure. This kind of plasma source has been the subject of increasing research activity in recent years. A number of geometric variants have been explored, and operational requirements and typical plasma parameters have been determined. Large arrays of individual tiny sources can be used to form large-area, atmospheric-pressure plasma sources. The simplicity of the method and the capability of operation without the need for the usual vacuum system and its associated limitations, provide a highly attractive option for new approaches to many different kinds of plasma applications, including plasma surface modification technologies. Here we review the background work that has been carried out in this new research field.

  • PDF

방풍펜스가 후방에 놓인 야적모래입자의 비산에 미치는 영향에 관한 연구 (Shelter Effect of Porous Fences on the Saltation of Sand Particles in an Atmospheric Boundary Layer)

  • 박기철;이상준
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1175-1184
    • /
    • 2000
  • Effects of porous wind fences on the wind erosion of particles from a triangular sand pile were investigated experimentally. The porous fence and sand pile were installed in a simulated atmospheric boundary layer. The mean velocity and turbulent intensity profiles measured at the sand pile location were well fitted to the atmospheric boundary layer over the open terrain. Flow visualization was carried out to investigate the motion of windblown sand particles qualitatively. In addition, the threshold velocity were measured using a light sensitive video camera with varying the particle size, fence porosity $\varepsilon$ and the height of sand pile. As a result, various types of particle motion were observed according to the fence porosity. The porous wind fence having porosity $\varepsilon$=30% was revealed to have the maximum threshold velocity, indicating good shelter effect for abating windblown dust particles. With increasing the sand particle diamter, the threshold velocity was also increased. When the height of sand pile is lower than the fence height, threshold velocity is enhanced.

대기압 화염 플라즈마 처리가 강판의 표면 및 고무와의 접착특성에 미치는 영향 (Effect of Atmospheric Pressure Flame Plasma Treatment on Surface and Adhesive Bonding Properties between Steel Plate and Rubber)

  • 류상렬;이동주
    • Composites Research
    • /
    • 제23권5호
    • /
    • pp.1-7
    • /
    • 2010
  • NBR과 강판의 접착특성을 향상시키기 위해 대기압 화염 플라즈마(APFP) 처리 장치가 사용되었다. 가장 우수한 접착특성을 나타내는 최적 조건을 찾기 위해 다양한 처리 조건(처리속도, 거리)에 따른 효과에 대한 실험적 연구를 하였다. 주어진 조건에서 버너 포트와 강판의 최적 거리는 40mm, 버너 포트의 최적 처리속도는 50m/min였다. APFP 처리 후 접착제를 두 번 도포한 강판의 접착강도는 접착제만 도포한 경우보다 20.5% 증가하였다. 본 연구를 통해서 대기압 화염 플라즈마 처리에 의한 강판의 표면개질이 고무와 강의 접착강도를 증가시키는 적절하면서도 응용이 가능한 방법임을 확인하였다.

지상원격탐사를 이용한 에어러솔 간접효과 연구 (Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings)

  • 김병곤;권태영
    • 한국대기환경학회지
    • /
    • 제22권2호
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

On the Performance of All-optical Amplify-and-forward Relaying with a Backup Radio-frequency Link Over Strong Atmospheric Turbulence and Misalignment Fading

  • Altubaishi, Essam Saleh
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.114-120
    • /
    • 2021
  • Free-space optical (FSO) communication is considered to be a potential solution to congestion in the radio-frequency spectrum and last-mile-access bottleneck issues in future cellular communication networks, such as 5G and beyond. However, FSO link performance may degrade significantly due to irradiance fluctuations and random temporal fluctuations from atmospheric turbulence. Therefore, in this work the main objective is to reduce the effect of the atmospheric turbulence by considering a multihop FSO communication system with amplify-and-forward relaying supported by a radio-frequency (RF) link, which form a hybrid FSO/RF communication system. The FSO link is assumed to follow the gamma-gamma fading model, which represents strong turbulence. Also, the RF link is modeled by a Rayleigh distribution. The performance of the considered system, in terms of the outage probability and average bit-error rate (BER), is investigated and analyzed under various weather conditions and pointing errors. Furthermore, the effect of the number of employed relay nodes on the performance of the system is investigated. The results indicate that the considered system reduces outage probability and average BER significantly, especially for low channel quality. Finally, the closed-form expressions derived in this work are compared to the results of Monte Carlo simulations, for verification.

Impact of the Gain-saturation Characteristic of Erbium-doped Fiber Amplifiers on Suppression of Atmospheric-turbulence-induced Optical Scintillation in a Terrestrial Free-space Optical Communication System

  • Jeong, Yoo Seok;Kim, Chul Han
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.141-146
    • /
    • 2021
  • We have evaluated the suppression effect of atmospheric-turbulence-induced optical scintillation in terrestrial free-space optical (FSO) communication systems using a gain-saturated erbium-doped fiber amplifier (EDFA). The variation of EDFA output signal power has been measured with different amounts of gain saturation and modulation indices of the optical input signal. From the measured results, we have found that the peak-to-peak power variation was decreased drastically below 2 kHz of modulation frequency, in both 3-dB and 6-dB gain compression cases. Then, the power spectral density (PSD) of optical scintillation has been calculated with Butterworth-type transfer function. In the calculation, different levels of atmospheric-turbulence-induced optical scintillation have been taken into account with different values of the Butterworth cut-off frequency. Finally, the suppression effect of optical scintillation has been estimated with the measured frequency response of the EDFA and the calculated PSD of the optical scintillation. From our estimated results, the atmospheric-turbulence-induced optical scintillation could be suppressed efficiently, as long as the EDFA were operated in a deeply gain-saturated region.

연안도시지역에서 대기오염의 3차원 수치예측모델링 -(I) 침적현상이 대기질에 미치는 영향예측 (3-D Numerical Prediction Modeling of Air Pollution in Coastal Urban Region -(I) An Effect Prediction for Deposition Phenomenon affecting on Air Quality)

  • 원경미;이화운
    • 한국대기환경학회지
    • /
    • 제15권5호
    • /
    • pp.625-638
    • /
    • 1999
  • Air quality modeling for coastal urban region has been composed of a complex system including meteorological, chemical and physical processes and emission characteristics in complex terrain. In this study, we studied about an effect prediction for deposition phenomenon affecting on air quality in Pusan metopolitan metropolitan city. In air quality modeling including ship sources, a situation considered deposition process habe better result than not considered when compared with observed value. Air pollutants emitted into urban air during the daytime nearly removed through urban atmosphere polluted. Also these phenomena correlated concentration variation connent with sea/land breezes and terrain effect. Therefore we conclude that the concentration was low at daytime when deposition flux is high, and deposition effect on industrial complex and Dongrae region is considerable in particular.

  • PDF

복사전달과정에서 지형효과에 따른 기상수치모델의 민감도 분석 (Sensitivity Analysis of Numerical Weather Prediction Model with Topographic Effect in the Radiative Transfer Process)

  • 지준범;민재식;장민;김부요;조일성;이규태
    • 대기
    • /
    • 제27권4호
    • /
    • pp.385-398
    • /
    • 2017
  • Numerical weather prediction experiments were carried out by applying topographic effects to reduce or enhance the solar radiation by terrain. In this study, x and ${\kappa}({\phi}_o,\;{\theta}_o)$ are precalculated for topographic effect on high resolution numerical weather prediction (NWP) with 1 km spatial resolution, and meteorological variables are analyzed through the numerical experiments. For the numerical simulations, cases were selected in winter (CASE 1) and summer (CASE 2). In the CASE 2, topographic effect was observed on the southward surface to enhance the solar energy reaching the surface, and enhance surface temperature and temperature at 2 m. Especially, the surface temperature is changed sensitively due to the change of the solar energy on the surface, but the change of the precipitation is difficult to match of topographic effect. As a result of the verification using Korea Meteorological Administration (KMA) Automated Weather System (AWS) data on Seoul metropolitan area, the topographic effect is very weak in the winter case. In the CASE 1, the improvement of accuracy was numerically confirmed by decreasing the bias and RMSE (Root mean square error) of temperature at 2 m, wind speed at 10 m and relative humidity. However, the accuracy of rainfall prediction (Threat score (TS), BIAS, equitable threat score (ETS)) with topographic effect is decreased compared to without topographic effect. It is analyzed that the topographic effect improves the solar radiation on surface and affect the enhancements of surface temperature, 2 meter temperature, wind speed, and PBL height.

풍향변동량 측정에 의한 춘천지역의 연기 수평확산폭 산출 (Estimation of Lateral Dispersion Parameter using Observed Wind Direction Fluctuation in Chunchon)

  • 이종범;김정식;김용국;조창래
    • 한국대기환경학회지
    • /
    • 제12권2호
    • /
    • pp.141-149
    • /
    • 1996
  • Lateral dispersion parameter(.sigma.$_{y}$) which is an important factor in atmospheric dispersion can be estimated byusing wind direction fluctuation(.sigma.$_{\theta}$). In this paper, we studied the characteristics of the .sigma.$_{\theta}$ in the Chunchon basin and calculated the .sig- ma.$_{y}$ by using the .sigma.$_{\theta}$. We could find some characteristics of the .sigma.$_{\theta}$ which showed small value, when the atmospheric condition was in weak unstable (C class) and neutral (D class). Moreover, when the atmospheric stability was neutral, there was no difference of .sigma.$_{\theta}$ with wind speed. On the other hand, .sigma.$_{\theta}$ showed large values at the strong unstable (A class) and strong stable (F class) condition with low wind speed. In this case, the .sigma.$_{\theta}$ increased as long as averaging time due to the long-period wind direction fluctuation by the terrain effect. In the result of calculation of .sigma.$_{y}$, it was smaller than that of pasquill-Gifford curve. Especially, when the atmospheric condition was in a neutral and stable, .sigma.$_{y}$ showed small increment as the downwind distance increased.creased.

  • PDF