Browse > Article

Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings  

Kim Byung-Gon (Department of Atmospheric Environmental Sciences Kangnung National University)
Kwon Tae-Young (Department of Atmospheric Environmental Sciences Kangnung National University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.22, no.2, 2006 , pp. 235-247 More about this Journal
Abstract
Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.
Keywords
Effective radius; Aerosol; Cloud optical depth; Liquid water path;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ackerman, T.P. and G.M. Stokes (2003) The Atmospheric Radiation Measurement Program, Physics Today, 38-44
2 Albrecht, B.A. (1989) Aerosols, cloud microphysics, and fractional cloudiness, Science 245, 1227-1230   DOI   ScienceOn
3 Charlson, R.J., S.E. Schwartz, J.H. Hales, R.D. Cess, J.A. Coakley Jr., J.E. Hansen, and D.J. Hofman (1992) Climate forcing by anthropogenic aerosols, Science 255, 423-430   DOI   ScienceOn
4 Feingold, G., W. Eberhard, D.E. Lane, and M. Previdi (2003) First measurements of the Twomey effect using ground-based remote sensors, Geophys. Res. Lett. 1287, doi:10.1029/2002GL01633
5 Han, Q., W.B. Rossow, J. Chou, and R.M. Welch (1998) Global variation of column droplet concentration in low-level clouds, Geophys. Res. Lett. 25, 1419-1422   DOI   ScienceOn
6 Min, Q. and L.C. Harrison (1996) Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP site, Geophys. Res. Lett. 23, 1641-1644   DOI   ScienceOn
7 Ramanathan V. and P.J. Crutzen (2001) Asian Brown Cloud Concept paper in the web page
8 Twomey, S. (1977) The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci. 34, 1149-1152   DOI
9 Wetzel, M.A. and L.L. Stowe (1999) Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing, J. Geophys. Res. 104, 31287-31229   DOI
10 Harshvardhan and M.D. King (1993) Comparative accuracy of diffusive radiative properties computed using selected multiple scattering approximations, J. Atmos. Sci. 50, 247-259   DOI
11 Radke, L.F., J.A. Coakley Jr., and M.D. King (1989) Direct and remote sensing observations of the effects of ships on clouds, Science 246, 1146-1149   DOI   ScienceOn
12 Breon, F.-M., D. Tanre, and S. Generoso (2002) Aerosol effect on cloud droplet size monitored from satellite, Science 295, 834-838   DOI   ScienceOn
13 Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima (2003) An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts, J. Geophys. Res. 108 (D23), 8633, doi:10.1029/2003JD003550   DOI
14 Stephens, G.L. (1984) The parameterization of radiation for numerical weather prediction and climate models, Mon. Wea. Rev. 112, 826-867   DOI
15 Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowie (1998) SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere. Bull. Amer. Meteorol. Soc. 79, 2101-2114   DOI   ScienceOn
16 Andrews, E., P.J. Sheridan, J.A. Ogren, and R. Ferrare (2004) In-situ aerosol profiles over the Southern Great Plains cloud and radiation test bed sites: 1. aerosol optical properties, J. Geophys. Res. 109, doi:10.1029/2003JD004025
17 Chameides, W.L., C. Luo, R. Saylor, D. Streets, Y. Huang, M. Bergin, and F. Giorgi (2002) Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depth: Indication of indirect effect?, J. Geophys. Res 107, doi:10.1029/2000JD000208
18 Liljegren, J.C., E.E. Clothiaux, G.G. Mace, S. Kato, and X. Dong (2001) A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature, J. Geophys. Res., 106, 14485-14500   DOI
19 International Panel on Climate Change (2001) Climate Change 2001: The scientific basis, Cambridge Univ. Press, New York
20 Kim, B.-G, S.E. Schwartz, M.A. Miller, and Q. Min (2003) Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. J. Geophys. Res. 108, doi:10.1029/2003JD003721
21 Albrecht, B.A., C.S. Bretherton, D. Johnson, W.H. Schubert, and A.S. Frisch(1995) The Atlantic Stratocumulus Transition Experiment ASTEX. Bull. Amer. Meteor. Soc. 76, 889-904   DOI
22 Clothiaux, E.E., T.P. Ackerman, G.G. Mace, K.P. Moran, R.T. Marchand, M.A. Miller, and B.E. Martner (2000) Objective determination of cloud heights and radar reflectivities using a combination of active remotesensors at the ARM CART sites, J. Appl. Met. 39, 645-665   DOI   ScienceOn
23 Harrison, L.C. and J.J. Michalsky (1994) Objective algorithms for the retrieval of optical depths from ground-based measurements, Appl. Optics 33, 5126-5132   DOI
24 Kiehl, J.T. and B.P. Briegleb (1993) The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science 260, 311-314   DOI   ScienceOn
25 Schwartz, S.E., Harshvardhan, and C.M. Benkovitz (2002) Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling, PNAS, 99, 1784-1789
26 Sheridan, P.J., D.J. Delene, and J.A. Ogren (2001) Four year of continuous surface aerosol measurements from the Department of Energy's Atmospheric Radiation Measurement program Southern Great Plains cloud and Radiation testbed site, J. Geophys. Res. 106, 20735-20747   DOI
27 Ackerman, A.S., O.B. Toon, D.E. Stevens, A.J. Heymsfield, V. Ramanathan, and E.J. Welton (2000) Reduction of tropical cloudiness by soot, Science 288, 1042-1047   DOI   ScienceOn
28 Hansen, J.E. and L.D. Travis (1974) Light-scattering in planetary atmospheres, Space Sci. Rev. 16, 527-610   DOI
29 Garrett T.J., C. Zhao, X. Dong, G.G. Mace, and P.V. Hobbs (2004) Effects of varying aerosol regimes on lowlevel Arctic stratus, Geophys. Res. Lett. 31, doi:10.1029/2004GL019928
30 Nakajima, T., A. Higurashi, K. Kawamoto, and J.E. Penner (2001) A possible correlation between satellitederived cloud and aerosol microphysical parameters, Geophys. Res. Lett. 28, 1171-1174   DOI   ScienceOn
31 Hansen, J.E., M. Sato, and R. Ruedy (1997) Radiative forcing and climate response, J. Geophys. Res. 102, 6831-6864   DOI