• Title/Summary/Keyword: Atmosphere sintering

Search Result 439, Processing Time 0.025 seconds

Mechanical Properties of the Pressureless Sintered $Al_2O_3-SiC$ Composite(1) : Dispersion Effects of SiC Powder (상압소결 $Al_2O_3-SiC$계 소결체의 기계적 성질 (I) : SiC분말의 분산효과)

  • 이홍림;김경수;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.231-236
    • /
    • 1988
  • In order to investigate the effect of second phase on $Al_2O_3$ matrix, SiC particles were dispersed in $Al_2O_3$ matrix as a second phase over the content range of 5 vol.% to 20 vol.%. To this mixture, $Y_2O_3$ or $TiO_2$ powders were added as a sintering additive before isostatically pressing and pressurelessly sintering at 180$0^{\circ}C$ for 90 min in $N_2$ atmosphere. With increasing SiC content, relative densities of composites were decreased but mechanical properties of composites were improvjed. In the case of adding $Y_2O_3$ as a sintering additive, maximum values of flexural strength, hardness and fracture toughness were 525 MPa, 17.1 GPa, 4.1 MPa.m1/2 respectively. In the case of adding X$TiO_2$ as a sintering additive, maximum values of flexural strength, hardness were 285 MPa, 12.1 GPa respectively. Improved mechanical properties were found to be the results of grain growth control of $Al_2O_3$ matrix and crack deflection by the second phase SiC particles.

  • PDF

Sintering Behavior and Mechanical Property of Mo Nanopowders (Mo 나노분말의 소결거동 및 기계적 특성)

  • Kim, Hai-Gon;Kim, Gil-Su;Oh, Sung-Tag;Suk, Myung-Jin;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.386-390
    • /
    • 2007
  • The sintering behavior and mechanical property of Mo nanopowder was investigated as a function of various sintering condition. Mo oxide nanopowders were milled using a high energy ball-milling process. After the ball milling for 20h, the crystalline size of $MoO_3$ was about 20 nm. The $MoO_3$ nanopowders were reduced at the temperature of $800^{\circ}C$ without holding time in $H_2$ atmosphere. The sinterability of Mo nanopowder and commercial Mo powder was investigated by dilatometric analysis. Mo nanopowder and commercial Mo powder were sintered at $1200^{\circ}C$ for 1 hand $1500^{\circ}C$ for 3 h, respectively. In both specimens the measured relative density was about 95%. But the measured hardness values were 2.34 GPa for nanopowder and 1.87 GPa for commercial powder. Probably due to finer grain size of the sintered body prepared from Mo nanopowder than that prepared using commercial Mo powder. The mean grain sizes were measured to be about 1.4 mm and 6.2 mm, respectively.

Effect of addition of dispersant on the physical properties of recycled zirconia (분산제의 첨가가 재활용 지르코니아의 물성에 미치는 영향)

  • Seo, Jeong-Il;Park, Won-Uk;Kim, Hae-Gyu
    • Journal of Technologic Dentistry
    • /
    • v.40 no.1
    • /
    • pp.17-25
    • /
    • 2018
  • Purpose: When casting of ceramics, proper amount of deflocculant was added for disperse the particles in slip. In this study, examined the optimum amount of APMA(ammonium polymethaacrylate) water as deflocculant for casting the zirconia. Methods: The 100 g of zirconia powder were ball milled with 300 g zirconia ball, 90 g of distilled water, and APMA water in polyethylene pot for 24 hours. The amount of APMA water were added as deflocculant from 0.5 to 0.9 g at an intervals of 0.1 g. The viscosity of slip with no deflocculant showed 1362c.p. and the minimum viscosity with 580c.p. obtained when the slip contained 0.7% of deflocculant. Bar type specimens were casted with plaster mold and biscuit fired at $1100^{\circ}C$ for 1 hours. Biscuit fired specimens were finished with $60mm(L){\times}14mm(W){\times}10mm(H) bar$. Finished specimens were 2nd fired at $1500^{\circ}C$ for 1 hour. Results: Regardless the addition of deflocculant, all 2nd fired specimens showed 0% of apparent porosity and water absorption. The specimens with no deflocculant showed 24% of drying shrinkage and 27.4% firing shrinkage. On the other hand, The specimens with deflocculant showed 17.4% of drying shrinkage and 17.6% firing shrinkage regardless the amount of deflocculant. The maximum bulk density with $6.09g/cm^3$ obtained when the specimens casted with 0.7~0.9% of deflocculant contained slips. Bend strength of specimen with no deflocculant showed 680 MPa and the maximum bend strength with 814 MPa obtained when the specimen casted with 0.7% of diflocculant contained slip. Conclusion : It was found that the particle shape of the powder according to the dispersing agent is added, the particle size, sintering temperature and affect the particle size distribution, sintering time, sintering atmosphere, such a great influence on the sintering.

Densification and Microstructure of Ultrafine-sized AlN Powder Prepared by a High Energy Ball Milling Process (고에너지 볼밀링 방법에 의해 얻어진 초미립 AlN 분말의 치밀화 및 미세구조)

  • Park, Hae-Ryong;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • In this study, a high energy ball milling process was employed in order to improve the densification of direct nitrided AlN powder. The densification behavior and the sintered microstructure of the milled AlN powder were investigated. Mixture of AlN powder doped with 5 wt.% $Y_2O_3$ as a sintering additive was pulverized and dispersed up to 50 min in a bead mill with very small $ZrO_2$ beads. Ultrafine AlN powder with a particle size of 600 nm and a specific surface area of 9.54 $m^2/g$ was prepared after milling for 50 min. The milled powders were pressureless-sintered at $1700^{\circ}C-1800^{\circ}C$ for 4 h under $N_2$ atmosphere. This powder showed excellent sinterability leading to full densification after sintering at $1700^{\circ}C$ for 4 h. However, the sintered microstructure revealed that the fraction of yitttium aluminate increased with milling time and sintering temperature and the newly-secondary phase of ZrN was observed due to the reaction of AlN with the $ZrO_2$ impurity.

The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성)

  • Cho, Ho-Jung;Ahn, In-Shup;Lee, Young-Hee;Park, Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

Effects of Sintering Additives on the Thermal and Mechanical Properties of AlN by Pressureless Sintering (상압소결 질화알루미늄의 소결 첨가제 변화에 따른 열적 및 기계적 특성)

  • Hwang, Jin Uk;Mun, So Youn;Nam, Sang Yong;Dow, Hwan Soo
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.395-404
    • /
    • 2019
  • Aluminum nitride (AlN) has excellent electrical insulation property, high thermal conductivity, and a low thermal expansion coefficient; therefore, it is widely used as a heat sink, heat-conductive filler, and heat dissipation substrate. However, it is well known that the AlN-based materials have disadvantages such as low sinterability and poor mechanical properties. In this study, the effects of addition of various amounts (1-6 wt.%) of sintering additives $Y_2O_3$ and $Sm_2O_3$ on the thermal and mechanical properties of AlN samples pressureless sintered at $1850^{\circ}C$ in an $N_2$ atmosphere for a holding time of 2 h are examined. All AlN samples exhibit relative densities of more than 97%. It showed that the higher thermal conductivity as the $Y_2O_3$ content increased than the $Sm_2O_3$ additive, whereas all AlN samples exhibited higher mechanical properties as $Sm_2O_3$ content increased. The formation of secondary phases by reaction of $Y_2O_3$, $Sm_2O_3$ with oxygen from AlN lattice influenced the thermal and mechanical properties of AlN samples due to the reaction of the oxygen contents in AlN lattice.

Low-Temperature Sintering Behavior of Aluminum Nitride Ceramics with Added Copper Oxide or Copper

  • Hwang, Jin-Geun;Oh, Kyung-Sik;Chung, Tai-Joo;Kim, Tae-Heui;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.104-110
    • /
    • 2019
  • The low-temperature sintering behavior of AlN was investigated through a conventional method. $CaF_2$, CuO and Cu were selected as additives based on their low melting points. When sintered at $1600^{\circ}C$ for 8 h in $N_2$ atmosphere, a sample density > 98% was obtained. The X-ray data indicated that eutectic reactions below $1200^{\circ}C$ were found. Therefore, the current systems have lower liquid formation temperatures than other systems. The liquid phase showed high dihedral angles at triple grain junctions, indicating that the liquid had poor wettability on the grain surfaces. Eventually, the liquid was likely to vaporize due to the unfavorable wetting condition. As a result, a microstructure with clean grain boundaries was obtained, resulting in higher contiguity between grains. From EDS analysis, oxygen impurity seems to be well removed in AlN lattice. Therefore, it is believed that the current systems are beneficial for reducing sintering temperature and improving oxygen removal.

A Study on the Synthesis and Consolidation of Ti3Al by Electro-Discharge (전기방전에 의한 Ti3Al의 합성 및 소결 특성 연구)

  • Jang, Hyungsun;Cho, Yujung;Kang, Taeju;Kim, Kibeom;Lee, Wonhee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.488-493
    • /
    • 2009
  • Direct syntheses of bulk $Ti_3Al$ via electro-discharge-sintering (EDS) of a stoichiometric elemental powder mixture were investigated. A capacitor bank of $450{\mu}F$ was charged with three input energies, 0.5, 1.0, and 1.5 kJ. The charged capacitor bank was then instantaneously discharged through 0.3 g of a Ti-25.0 at.%Al powder mixture for consolidation. Complete phase transformation occurred in less than $200{\mu}sec$ by the discharge and a bulk $Ti_3Al$ compact was obtained. Compared with consolidated samples fabricated by conventional methods such as high vacuum sintering and casting, the electro-discharge-sintered $Ti_3Al$ compact shows a very fine microstructure with a hardness value of 425 Hv. Electro-discharge-sintering under a $N_2$ atmosphere successfully modified the surface Ti oxide of the $Ti_3Al$ compact into Ti nitride, which concurred with the synthesis and consolidation of $Ti_3Al$. Complete conversion yielding a single phase $Ti_3Al$ is primarily dominated by the fast solid state diffusion reaction.

Fabrication of Porous Ti by Freeze-Drying and Heat Treatment of TiH2/Camphene Slurries (TiH2/camphene 슬러리의 동결건조 및 열처리에 의한 Ti 계 다공체의 제조)

  • Seo, Han Gil;Kim, Young Do;Suk, Myung-Jin;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.339-343
    • /
    • 2013
  • Porous Ti-systems with unidirectionally aligned channels were synthesized by freeze-drying and a heat treatment process. $TiH_2$ powder and camphene were used as the source materials of Ti and sublimable vehicles, respectively. Camphene slurries with $TiH_2$ content of 10 and 15 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$ while unidirectionally controlling the growth direction of the camphene. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was heat-treated at $1100^{\circ}C$ for 1 h in a nitrogen and air atmosphere. XRD analysis revealed that the samples composed of TiN and $TiO_2$ phase were dependent on the heat-treatment atmosphere. The sintered samples showed large pores of about 120 mm which were aligned parallel to the camphene growth direction. The internal wall of the large pores had relatively small pores with a dendritic structure due to the growth of camphene dendrite depending on the degree of nucleation and powder rearrangement in the slurry. These results suggest that a porous body with an appropriate microstructure can be successfully fabricated by freeze-drying and a controlled sintering process of a camphene/$TiH_2$ slurry.

Formation Mechanism of Low Density Ceramic Supporter with Fly Ash (석탄회를 이용한 저밀도 세라믹 담체의 제조 기구)

  • Hwang, Yeon;Lee, Hyo-Sook;Lee, Woo-Chul;Jeong, Yong-Dae;Lee, Won-Kwon
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2000
  • Low density ceramic supporter was prepared by using fly ash as a starting material for the application to the biological aerated filter system. Wheat powders were used to control the porosity of the supporter and the carbon content of the raw material. Apparent density of 1.6~1.8 g/$\textrm{cm}^3$ was obtained when the fly ash was sintered at $1200^{\circ}C$ in a weak reducing atmosphere. By maintaining the reducing atmosphere and sintering at a high heating rate, the liquid phase was formed from the reduced composition of fly ash. This resulted in the closed pore formation which enabled the low apparent density.

  • PDF