Browse > Article
http://dx.doi.org/10.4150/KPMI.2007.14.6.386

Sintering Behavior and Mechanical Property of Mo Nanopowders  

Kim, Hai-Gon (Division of Materials Science & Engineering, Hanyang University)
Kim, Gil-Su (Division of Materials Science & Engineering, Hanyang University)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Technology)
Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University)
Kim, Young-Do (Division of Materials Science & Engineering, Hanyang University)
Publication Information
Journal of Powder Materials / v.14, no.6, 2007 , pp. 386-390 More about this Journal
Abstract
The sintering behavior and mechanical property of Mo nanopowder was investigated as a function of various sintering condition. Mo oxide nanopowders were milled using a high energy ball-milling process. After the ball milling for 20h, the crystalline size of $MoO_3$ was about 20 nm. The $MoO_3$ nanopowders were reduced at the temperature of $800^{\circ}C$ without holding time in $H_2$ atmosphere. The sinterability of Mo nanopowder and commercial Mo powder was investigated by dilatometric analysis. Mo nanopowder and commercial Mo powder were sintered at $1200^{\circ}C$ for 1 hand $1500^{\circ}C$ for 3 h, respectively. In both specimens the measured relative density was about 95%. But the measured hardness values were 2.34 GPa for nanopowder and 1.87 GPa for commercial powder. Probably due to finer grain size of the sintered body prepared from Mo nanopowder than that prepared using commercial Mo powder. The mean grain sizes were measured to be about 1.4 mm and 6.2 mm, respectively.
Keywords
Molybdenum nanopowder; High-energy ball milling; Sintering; Hardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Garg, S. J. Park and R. M. German: Int. J. Refract. Met. Hard Mater., 25 (2007) 16   DOI   ScienceOn
2 K. S. Hwang and H. S. Huang: Acta Mater., 51 (2003) 3915   DOI   ScienceOn
3 C. Herring: J. Appl. Phys., 21 (1950) 301   DOI
4 G. S. Kim, Y. J. Lee, D. G. Kim, S. T. Oh, S. Y. Chang and Y.D. Kim: J. Alloys Compd. (2007), doi:10.1016/j.jallcom.2006.12.039 submitted   DOI   ScienceOn
5 Y. Hiraoka, T. Ogusu and N. Yoshizawa: J. Alloys Compd., 381 (2004) 192   DOI   ScienceOn
6 K. S. Hwang and H. S. Huang: Int. J. Refract. Hard Mater., 22 (2004) 185   DOI   ScienceOn
7 R. M. German and Z. A. Munir: J. Less-Common Met., 58 (1978) 61   DOI   ScienceOn
8 E. F. Baroch, M. Ostermann and G. Patrick: Adv. Powder Metall., 5 (1991) 321
9 T. S. Srivatsan, B. G. Ravi, M. Petraroli and T. S. Sudarshan: Int. J. Refract. Met. Hard Mater., 20 (2002) 181   DOI   ScienceOn
10 R. M. German and C. A. Labombard: Int. J. Powder Metall. Powder Technol., 18 (1982) 147
11 P. E. Zovas and R. M. German: Metall. Trans. A, 15A (1983) 1103
12 H. Hofmann, M. Grosskopf, M. Hofmann-Amtenbrink and G. Petzow: Powder Metall., 29 (1986) 201   DOI
13 G. S. Kim, Y. J. Lee, D. G. Kim and Y. D. Kim: J. of Alloys Compd. (2007), doi:10.1016/j.jallcom.2006.12. 039   DOI   ScienceOn
14 R. M. Greman: Sintering Theory and Practice, John Wiley & Sons, (1996) 67
15 E. O. Hall: Proc. Phys. Sot. London B, 64 (1951) 747   DOI   ScienceOn