DOI QR코드

DOI QR Code

Mo 나노분말의 소결거동 및 기계적 특성

Sintering Behavior and Mechanical Property of Mo Nanopowders

  • 김해곤 (한양대학교 신소재공학과) ;
  • 김길수 (한양대학교 신소재공학과) ;
  • 오승탁 (서울산업대학교 신소재공학과) ;
  • 석명진 (강원대학교 재료금속공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Kim, Hai-Gon (Division of Materials Science & Engineering, Hanyang University) ;
  • Kim, Gil-Su (Division of Materials Science & Engineering, Hanyang University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Technology) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Kim, Young-Do (Division of Materials Science & Engineering, Hanyang University)
  • 발행 : 2007.12.28

초록

The sintering behavior and mechanical property of Mo nanopowder was investigated as a function of various sintering condition. Mo oxide nanopowders were milled using a high energy ball-milling process. After the ball milling for 20h, the crystalline size of $MoO_3$ was about 20 nm. The $MoO_3$ nanopowders were reduced at the temperature of $800^{\circ}C$ without holding time in $H_2$ atmosphere. The sinterability of Mo nanopowder and commercial Mo powder was investigated by dilatometric analysis. Mo nanopowder and commercial Mo powder were sintered at $1200^{\circ}C$ for 1 hand $1500^{\circ}C$ for 3 h, respectively. In both specimens the measured relative density was about 95%. But the measured hardness values were 2.34 GPa for nanopowder and 1.87 GPa for commercial powder. Probably due to finer grain size of the sintered body prepared from Mo nanopowder than that prepared using commercial Mo powder. The mean grain sizes were measured to be about 1.4 mm and 6.2 mm, respectively.

키워드

참고문헌

  1. E. F. Baroch, M. Ostermann and G. Patrick: Adv. Powder Metall., 5 (1991) 321
  2. T. S. Srivatsan, B. G. Ravi, M. Petraroli and T. S. Sudarshan: Int. J. Refract. Met. Hard Mater., 20 (2002) 181 https://doi.org/10.1016/S0263-4368(01)00076-2
  3. P. Garg, S. J. Park and R. M. German: Int. J. Refract. Met. Hard Mater., 25 (2007) 16 https://doi.org/10.1016/j.ijrmhm.2005.10.014
  4. R. M. German and C. A. Labombard: Int. J. Powder Metall. Powder Technol., 18 (1982) 147
  5. P. E. Zovas and R. M. German: Metall. Trans. A, 15A (1983) 1103
  6. H. Hofmann, M. Grosskopf, M. Hofmann-Amtenbrink and G. Petzow: Powder Metall., 29 (1986) 201 https://doi.org/10.1007/BF00797961
  7. Y. Hiraoka, T. Ogusu and N. Yoshizawa: J. Alloys Compd., 381 (2004) 192 https://doi.org/10.1016/j.jallcom.2004.03.112
  8. K. S. Hwang and H. S. Huang: Acta Mater., 51 (2003) 3915 https://doi.org/10.1016/S1359-6454(03)00216-7
  9. K. S. Hwang and H. S. Huang: Int. J. Refract. Hard Mater., 22 (2004) 185 https://doi.org/10.1016/j.ijrmhm.2004.06.003
  10. R. M. German and Z. A. Munir: J. Less-Common Met., 58 (1978) 61 https://doi.org/10.1016/0022-5088(78)90071-1
  11. C. Herring: J. Appl. Phys., 21 (1950) 301 https://doi.org/10.1063/1.1699658
  12. G. S. Kim, Y. J. Lee, D. G. Kim and Y. D. Kim: J. of Alloys Compd. (2007), doi:10.1016/j.jallcom.2006.12. 039
  13. G. S. Kim, Y. J. Lee, D. G. Kim, S. T. Oh, S. Y. Chang and Y.D. Kim: J. Alloys Compd. (2007), doi:10.1016/j.jallcom.2006.12.039 submitted
  14. R. M. Greman: Sintering Theory and Practice, John Wiley & Sons, (1996) 67
  15. E. O. Hall: Proc. Phys. Sot. London B, 64 (1951) 747 https://doi.org/10.1088/0370-1301/64/9/303