• Title/Summary/Keyword: Asymptotically Stable

Search Result 142, Processing Time 0.021 seconds

DISEASE TRANSMISSION MSEIR MODEL WITH INDIVIDUALS TRAVELING BETWEEN PATCHES i AND i + 1

  • Chaharborj, Sarkhosh Seddighi;Bakar, Mohd Rizam Abu;Ebadian, Alli
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1073-1088
    • /
    • 2010
  • In this article we want to formulate a disease transmission model, MSEIR model, for a population with individuals travelling between patches i and i + 1 and we derive an explicit formula for the basic reproductive number, $R_0$, employing the spectral radius of the next generation operator. Also, in this article we show that a system of ordinary differential equations for this model has a unique disease-free equilibrium and it is locally asymptotically stable if $R_0$ < 1 and unstable if $R_0$ > 1.

Control Lyapunov Function Design by Cancelling Input Singularity

  • Yeom, Dong-Hae;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • If one can find a control Lyapunov function (CLF) for a given nonlinear system, the control input stabilizing the system can be easily obtained. To find a CLF, the time derivative of an energy function should be negative definite. This procedure frequently requires a control input which is a rational function or includes an inverse function. The control input is not defined on the specific state-space where the denominator of the rational function is equal to 0 or the inverse function does not exist. In this region with singularities, the trajectory of the control system cannot be generated, which is one of the most important reasons why it is hard to make the origin of a nonlinear system be globally asymptotically stable. In this paper, we propose a smooth control law ensuring the globally asymptotic stability by means of cancelling the singularity in the control input.

Takagi-Sugeno Model-Based Non-Fragile Guaranteed Cost Control for Uncertain Discrete-Time Systems with State Delay

  • Fang, Xiaosheng;Wang, Jingcheng;Zhang, Bin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2008
  • A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the proposed design method.

Delay-dependent Robust $H_{\infty}$ Filtering for Uncertain Descriptor Systems with Time-varying Delay (시변 시간지연을 가지는 불확실 특이시스템의 지연 종속 강인 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1796-1801
    • /
    • 2009
  • This paper is concerned with the problem of delay-dependent robust $H_{\infty}$ filtering for uncertain descriptor systems with time-varying delay. The considering uncertainty is convex compact set of polytoic type. The purpose is the design of a linear filter such that the resulting filtering error descriptor system is regular, impulse-free, and asymptotically stable with $H_{\infty}$ norm bound. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent bounded real lemma (BRL) for delayed descriptor systems is derived. Based on the derived BRL, a robust $H_{\infty}$ filter is designed in terms of linear matrix inequaltity (LMI). Numerical examples are given to illustrate the effectiveness of the proposed method.

A Novel MRAC Scheme for Electrical Servo Drives (서보전동기의 기준 모델 적응제어)

  • Park, Min-Ho;Chy, Ick;Yoon, Tae-Woong;Kim, Kwang-Bae
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.888-895
    • /
    • 1989
  • A novel model reference adaptive control (MRAC) scheme for electrical servo drives is proposed, in which the control input is synthesized without any parameter identification mechanism and a PI controller is inserted ahead of the plant to reduce the steady state chattering. The proposed scheme is shown to be asymptotically stable in the case where the load torque disturbance satisfies a certan condition. An application to a permanent magnet synchronous motor drive shows that the output error between the plant and the reference model tends to zero and the chattering is greatly reduced.

  • PDF

Adaptive Robust Output Tracking for Nonlinear MMO Systems

  • Im, Kyu-Mann
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.177-182
    • /
    • 2003
  • The robust output tracking control problem of general nonlinear MIMO systems is discussed. The robustness against parameter uncertainties is considered. In this paper, we proposed the robust output tracking control scheme for a class of MIMO nonlinear dynamical systems using output feedback linearization method. The presented control scheme is based on the VSS. We assume that the nonlinear dynamical system is minimum phase, the relative degree of the system is r$_{1}$+r$_{2}$+…r$_{m}$$\leq$ n and zero dynamics is stable. It is shown that the outputs of the closed-loop system asymptotically track given output trajectories despite the uncertainties while maintaining the boundedness of all signals inside the loop. And we verified that the proposed control scheme is then applied to the control of a two degree of freedom (DOF) robotic manipulator with payload.d.

  • PDF

H State Estimation of Static Delayed Neural Networks with Non-fragile Sampled-data Control (비결함 샘플 데이타 제어를 가지는 정적 지연 뉴럴 네트웍의 강인 상태추정)

  • Liu, Yajuan;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.171-178
    • /
    • 2017
  • This paper studies the state estimation problem for static neural networks with time-varying delay. Unlike other studies, the controller scheme, which involves time-varying sampling and uncertainties, is first employed to design the state estimator for delayed static neural networks. Based on Lyapunov functional approach and linear matrix inequality technique, the non-fragile sampled-data estimator is designed such that the resulting estimation error system is globally asymptotically stable with $H_{\infty}$ performance. Finally, the effectiveness of the developed results is demonstrated by a numerical example.

Molten steel level control of strip casting process using stable adaptive fuzzy control scheme (안정 적응 퍼지 제어기를 이용한 박판 주조 공정에서의 용강 높이 제어)

  • Joo, Moon-G.;Lee, D.S.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1929-1931
    • /
    • 2001
  • An adaptive fuzzy logic controller to regulate molten steel level in the strip casting process is presented, where parameters of fuzzy controllers are adapted stably by using Lyapunov-stability theory and a switching controller is used together to deal with the approximation error of fuzzy logic system. The level error is proven to converge to zero asymptotically. In the simulation, the clogging/unclogging of a stopper nozzle is considered and overcome by the proposed controller. Robustness to uncertainty is shown to be superior to conventional PI controller.

  • PDF

Robust Control of Nonlinear System using Adaptive Backstepping Technique (적응백스테핑기법을 이용한 비선형시스템 강인제어)

  • Hyun, Keun-Ho;Kim, Dong-Hun;Kim, Eung-Seok;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2087-2088
    • /
    • 2001
  • In this paper we presents a speed controller for permanent magnet synchronous motor using adaptive backstepping technique. The adaptive backstepping technique takes system nonlinearity into account in the control system design stage. The proposed control and adaptive law is proved to be asymptotically stable by the Lyapunov stability theory.

  • PDF

THE RULE OF TRAJECTORY STRUCTURE AND GLOBAL ASYMPTOTIC STABILITY FOR A FOURTH-ORDER RATIONAL DIFFERENCE EQUATION

  • Li, Xianyi;Agarwal, Ravi P.
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.787-797
    • /
    • 2007
  • In this paper, the following fourth-order rational difference equation $$x_{n+1}=\frac{{x_n^b}+x_n-2x_{n-3}^b+a}{{x_n^bx_{n-2}+x_{n-3}^b+a}$$, n=0, 1, 2,..., where a, b ${\in}$ [0, ${\infty}$) and the initial values $X_{-3},\;X_{-2},\;X_{-1},\;X_0\;{\in}\;(0,\;{\infty})$, is considered and the rule of its trajectory structure is described clearly out. Mainly, the lengths of positive and negative semicycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is $1^+,\;1^-,\;1^+,\;4^-,\;3^+,\;1^-,\;2^+,\;2^-$ in a period, by which the positive equilibrium point of the equation is verified to be globally asymptotically stable.