• 제목/요약/키워드: Asymptotic mean squared error

검색결과 20건 처리시간 0.023초

ASYMPTOTIC MEAN SQUARED ERROR OF POSITIVE PART JAMES-STEIN ESTIMATORS

  • KIM MYUNG JOON;KIM YEONG-HWA
    • Journal of the Korean Statistical Society
    • /
    • 제34권2호
    • /
    • pp.99-107
    • /
    • 2005
  • In this paper we consider the asymptotic mean squared error of positive part James-Stein estimators. In the normal-normal example, estimators of the mean squared error of these estimators are provided which are correct asymptotically up to O($m^{-l}$). Asymptotic estimators of the MSE's which correct up to O($m^{-l}$) are also provide. Here, m denotes the number of strata. A simulation study is undertaken to evaluate the performance of these estimators.

On Copas′ Local Likelihood Density Estimator

  • Kim, W.C.;Park, B.U.;Kim, Y.G.
    • Journal of the Korean Statistical Society
    • /
    • 제30권1호
    • /
    • pp.77-87
    • /
    • 2001
  • Some asymptotic results on the local likelihood density estimator of Copas(1995) are derived when the locally parametric model has several parameters. It turns out that it has the same asymptotic mean squared error as that of Hjort and Jones(1996).

  • PDF

Minimum Mean Squared Error Accelerated Life Test Plans for Exponential Lifetime Distribution

  • Joong Yang Park
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.13-19
    • /
    • 1995
  • This paper considers model robust accelerated life test plans for estimating the logmean or percentile of product lige which is exponentially distributed. A linear relationship between the log mean life and the stress is assumed as usual, while the true relationship is quadratic. Optimum plans are then obtained by minimizing asymptotic mean squared error of maximum likelihood estimator of the log mean life.

  • PDF

A FRAMEWORK TO UNDERSTAND THE ASYMPTOTIC PROPERTIES OF KRIGING AND SPLINES

  • Furrer Eva M.;Nychka Douglas W.
    • Journal of the Korean Statistical Society
    • /
    • 제36권1호
    • /
    • pp.57-76
    • /
    • 2007
  • Kriging is a nonparametric regression method used in geostatistics for estimating curves and surfaces for spatial data. It may come as a surprise that the Kriging estimator, normally derived as the best linear unbiased estimator, is also the solution of a particular variational problem. Thus, Kriging estimators can also be interpreted as generalized smoothing splines where the roughness penalty is determined by the covariance function of a spatial process. We build off the early work by Silverman (1982, 1984) and the analysis by Cox (1983, 1984), Messer (1991), Messer and Goldstein (1993) and others and develop an equivalent kernel interpretation of geostatistical estimators. Given this connection we show how a given covariance function influences the bias and variance of the Kriging estimate as well as the mean squared prediction error. Some specific asymptotic results are given in one dimension for Matern covariances that have as their limit cubic smoothing splines.

Efficient Use of Auxiliary Variables in Estimating Finite Population Variance in Two-Phase Sampling

  • Singh, Housila P.;Singh, Sarjinder;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.165-181
    • /
    • 2010
  • This paper presents some chain ratio-type estimators for estimating finite population variance using two auxiliary variables in two phase sampling set up. The expressions for biases and mean squared errors of the suggested c1asses of estimators are given. Asymptotic optimum estimators(AOE's) in each class are identified with their approximate mean squared error formulae. The theoretical and empirical properties of the suggested classes of estimators are investigated. In the simulation study, we took a real dataset related to pulmonary disease available on the CD with the book by Rosner, (2005).

Families of Estimators of Finite Population Variance using a Random Non-Response in Survey Sampling

  • Singh, Housila P.;Tailor, Rajesh;Kim, Jong-Min;Singh, Sarjinder
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.681-695
    • /
    • 2012
  • In this paper, a family of estimators for the finite population variance investigated by Srivastava and Jhajj (1980) is studied under two different situations of random non-response considered by Tracy and Osahan (1994). Asymptotic expressions for the biases and mean squared errors of members of the proposed family are obtained; in addition, an asymptotic optimum estimator(AOE) is also identified. Estimators suggested by Singh and Joarder (1998) are shown to be members of the proposed family. A correction to the Singh and Joarder (1998) results is also presented.

Asymptotic Characteristics of MSE-Optimal Scalar Quantizers for Generalized Gamma Sources

  • 이재건;나상신
    • 한국통신학회논문지
    • /
    • 제37권5A호
    • /
    • pp.279-289
    • /
    • 2012
  • Characteristics, such as the support limit and distortions, of minimum mean-squared error (MSE) N-level uniform and nonuniform scalar quantizers are studied for the family of the generalized gamma density functions as N increases. For the study, MSE-optimal scalar quantizers are designed at integer rates from 1 to 16 bits/sample, and their characteristics are compared with corresponding asymptotic formulas. The results show that the support limit formulas are generally accurate. They also show that the distortion of nonuniform quantizers is observed to converge to the Panter-Dite asymptotic constant, whereas the distortion of uniform quantizers exhibits slow or even stagnant convergence to its corresponding Hui-Neuhoff asymptotic constant at the studied rate range, though it may stay at a close proximity to the asymptotic constant for the Rayleigh and Laplacian pdfs. Additional terms in the asymptote result in quite considerable accuracy improvement, making the formulas useful especially when rate is 8 or greater.

Minimum risk point estimation of two-stage procedure for mean

  • Choi, Ki-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.887-894
    • /
    • 2009
  • The two-stage minimum risk point estimation of mean, the probability of success in a sequence of Bernoulli trials, is considered for the case where loss is taken to be symmetrized relative squared error of estimation, plus a fixed cost per observation. First order asymptotic expansions are obtained for large sample properties of two-stage procedure. Monte Carlo simulation is carried out to obtain the expected sample size that minimizes the risk and to examine its finite sample behavior.

  • PDF

Estimation of the exponentiated half-logistic distribution based on multiply Type-I hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.47-64
    • /
    • 2020
  • In this paper, we derive some estimators of the scale parameter of the exponentiated half-logistic distribution based on the multiply Type-I hybrid censoring scheme. We assume that the shape parameter λ is known. We obtain the maximum likelihood estimator of the scale parameter σ. The scale parameter is estimated by approximating the given likelihood function using two different Taylor series expansions since the likelihood equation is not explicitly solved. We also obtain Bayes estimators using prior distribution. To obtain the Bayes estimators, we use the squared error loss function and general entropy loss function (shape parameter q = -0.5, 1.0). We also derive interval estimation such as the asymptotic confidence interval, the credible interval, and the highest posterior density interval. Finally, we compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. The average length of 95% intervals and the corresponding coverage probability are also obtained.

Finite-Sample, Small-Dispersion Asymptotic Optimality of the Non-Linear Least Squares Estimator

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.303-312
    • /
    • 1995
  • We consider the following type of general semi-parametric non-linear regression model : $y_i = f_i(\theta) + \epsilon_i, i=1, \cdots, n$ where ${f_i(\cdot)}$ represents the set of non-linear functions of the unknown parameter vector $\theta' = (\theta_1, \cdots, \theta_p)$ and ${\epsilon_i}$ represents the set of measurement errors with unknown distribution. Under suitable finite-sample, small-dispersion asymptotic framework, we derive a general lower bound for the asymptotic mean squared error (AMSE) matrix of the Gauss-consistent estimator of $\theta$. We then prove the fundamental result that the general non-linear least squares estimator (NLSE) is an optimal estimator within the class of all regular Gauss-consistent estimators irrespective of the type of the distribution of the measurement errors.

  • PDF