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Abstract

The two-stage minimum risk point estimation of mean, the probability of success
in a sequence of Bernoulli trials, is considered for the case where loss is taken to be
symmetrized relative squared error of estimation, plus a fixed cost per observation.
First order asymptotic expansions are obtained for large sample properties of two-
stage procedure. Monte Carlo simulation is carried out to obtain the expected sample
size that minimizes the risk and to examine its finite sample behavior.
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1. Introduction

Let X7, Xo,- - be a sequence of independent and identically distributed random variables
with P(X; = 1) = 0,P(X; =0) = 1—-6,0 < § < 1. Given a sample of size n, one wishes
to estimate 6, by the sample mean 6,, = S,,/n where S, = > | X;, subject to the loss

function
2
Y (1.1)
M\ aa—e) T |

where A > 0 is a known weight and ¢ > 0 is a known cost per observation. Note that loss
is modeled as the sum of a multiple of the symmetrized relative squared estimation error
appropriate when 6 close to 0 or 1 and the aggregate cost of observations. Consider the
following hypothetical situation in medical trials (Hubert and Pyke, 2000). The probability
0 that a drug will cure a particular ailment is to be estimated sequentially with a cost ¢ > 0
per observation. If this value of # is large, the drug will tend to be called a cure and research
will shift to other ailments. If 8 is small, the drug will be discarded and more money and
time will be invested in the problem. However, if 6 is close to one-half, no dramatic change
will occur, that is, the drug will continue to be administered and research will continue
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in the same direction. Since in both extreme cases a dramatic decision will result, greater
accuracy of estimation is demanded. A loss function satisfies such a requirement.

Developments of Robbins’s work have included the study of more elaborate loss function for
the normal distribution with unknown variance (Starr and Woodroofe, 1969) and extensions
to other distributions such as the exponential (Starr and Woodroofe, 1972) and the uniform
(Mukhopadhyay et al., 1983). The following discussion is due to Robbins (1959). For fixed
n and 6, the expected loss for (1.1) is

Eg (Ln) = A(nf(1 —0)) " + cn,
which is minimized by using the optimal fixed sample size
no = no (0) ~ (A/ (cB(1 — 0)))*/2. (1.2)
The corresponding optimal fixed sample size risk is
Ep (Lpy) = 2cng. (1.3)

Since 6 is unknown, the required sample size ng is indeed unknown, and there is no fixed
sample size rule that will achieve the risk Ey (L,,) . In the case of squared relative error loss
function. Robbins and Siegmund (1974) proposed a purely sequential estimation procedure
for a Bernoulli success probability parameter §. They proved that for any fixed 0 < 6 < 1, as
¢ — 0, N/ng — 1, in probability and E, (Lnx) /E, (Ly,) — 1, so that the purely sequential
procedure is asymptotically as good as the optimal fixed sample size rule ngy. For any fixed
¢ > 0, however, this procedure performs badly for 6 close to 0 or 1. To overcome this
difficulty, Cabilio and Robbins (1975), Cabilio (1977) and Liu (2000) introduced the problem
from the Bayesian point of view and obtained some asymptotic properties of the optimal
Bayes procedure for the uniform prior and unspecified prior. Zacks and Mukhopadhyay
(2007) develop the exact distribution of the stopping variable of a sequential procedure that
was originally given by Robbins and Siegmund (1974). The stopping variable was designed
for estimating the log-odds in a sequence of Bernoulli trials.

There are two major reasons for using sequential procedures in inference. The first is
to decrease expected sample size with regard to hypothesis testing. The second reason is
if there is no suitable fixed sample size procedure available. An early estimation example
of the latter is Stein’s two-stage procedure for estimating the mean of normal distribution
with unknown variance, a problem for which no fixed sample size procedure suffices for all
possible values of the variance. Usually, purely sequential procedures enjoy many desirable
asymptotic properties. However, from the practical point of view, sampling with larger
batches can be observed quickly and hence one may be able to cut down the operational
time significantly compared with sapling sequentially when time or costs are important
design factors. Furthermore, Hall (1981) proposed a triple sampling procedure and showed
that the procedure combines the simplicity of Stein (1945) with the efficiency of the fully
sequential procedures. In particular, two-stage and three-stage point estimation problems
have been studied by Ghosh and Mukhopadhyay (1981). Mukhopadhyay (1985), Hamdy
et al. (1988), Choi (2008) and Ghosh et al. (1997) in reviewing the progress of multistage
estimation methods.

The plan of this paper is as follows. Section 2 proposes a two-stage sampling and point
estimation procedure and then states the main result of this paper concerning its asymptotic
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properties. Section 3 presents some results of the moderate sample size performance of the
procedure using the Monte Carlo method.

2. Asymptotic for the two-stage procedure

The two-stage procedure is constructed as follows. Let m be a positive integer and we
start the experiment with a sample of size m, say Xi,...,X,,. Based on the sample, we
assume that the pilot sample size m is chosen such that

m = m(c) = <2 (A/c)1/2> +1 (2.1)

where < a > is the largest integer smaller than a. We note that the initial sample size m
is going to increase as ng(f) increases and for all practical purposes m is always less than
no(0) + 1 since 6(1 — 0) < 1/4 for all § € (0,1). So, we may proceed to consider two-stage
procedure. Let

N = (A/e)? {Xpn(1 = X)) +m~ 2} 2

Note that we make sure that X (1 — X,,) +m~! remains well defined if it happens at all
that X,, =0 or X,,, = 1. Next, the final sample size M as

M = M(c) = max {m, (N) + 1} . (2.2)

When M = m, we do not take any more samples in the second stage. If, however, M > m
then we obtain more M — m observations, say, Xy,+1,... ,Xa. Finally, we estimate 6 by
f5; and the corresponding loss is Ljys. As usual, the risk efficiency of the two-stage proce-
dure (2.2) is defined as e(c) = Eg(Lar)/Eo(Ly,). In this section, we study the asymptotic
properties of the proposed two-stage stopping rule. Justification of the proposed procedure
rests primarily upon its good asymptotic behavior for sufficiently small c¢. Theoretically, we
are not able to investigate its small sample behavior of the proposed procedure when sample
size is sufficiently large. Therefore, since the random stopping time M is a function of c,
we can get large enough M by letting ¢ get small. From the stopping rule (2.2), we note
that M(c) > m(c) and thus lim._,g M(c¢) > lim._,gm(c) = oo with probability one. So, we
lim._o M(c) = oo with probability one. M has the following properties as ¢ — 0 for fixed
0<6<1.

Theorem 2.1 We have
(i) lime—o M/ng = 1 in probability.
(ii) ime—o E{M/no} = 1.
Proof: There is no loss of generality in supposing that A =1 and from (2.2), we have
c /2 {Xm(l — X)) + 77171}_1/2 <M < 1?2
s} {Xm(1 = X)) +m Y2 I (M = m) (2.3)
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from which it is see that

{Xn(1—Xm) + m‘l}fl/2 (0(1—0))Y/2 < M
no

< AXm(1 = X)) +m V(01— )2+ (M = m). (2.4)
no

We know that lim._.om = oo, but m = O(ng). Using the weak law of large numbers it
follows that the estimator X,, of # converges in probability to 6 as ng — co. Thus, part (i)
will follow from (2.4). if we verify that I(M = m) — 0 in probability as ng — oo. It follows
that there exists a § > 0 such that [M = m]| C [|0,, — 0] > 4] for all large value of m. Using
the basic inequality (Loeve, 1977, page 160) for a binomial random variable, it follows that

P, >0+0)=P(X1+ -+ X, >m(0 +9))
<exp {—mdt + mtz} (2.5)

for all 0 < t < 1. In particular, taking ¢ = 6/2, the right hand side of (2.5) is less than or
equal to exp(—mn;) where 75 = 62/4 > 0. Similarly, P(6,, < —§) < exp(—mns). Putting
together yields

P(|0m — 6| = 6) < 2exp(—mns)

for some 15 > 0. So P(M = m) < P(|0,, — 0| > §) = O(e”"™"). Next, with an arbitrary
but fixed € > 0,

PI(M=m)>¢) <e 'E{I(M=m)}=e¢'P{M=m}—0,

as ng — oo. Hence lim._.o M/ng = 1.

The proof of part (ii) is based on showing that the convergence of part (i) is dominated.
We verify that P(M = m) = O(e”™7). Also, the Fatou’s lemma (Ash, 1972, p. 48) and
part (i) together will let us conclude that

M M
lim inf E{} zE{liminf } =1.
c—0 no c—0 Un)

Thus, in view of the upper bound given by (2.4), part (ii) immediately follow if we can verify

the follows results
- ) 1/2 ) 1/2 g
M T —X m [~ \ea-o (26)

for every fixed 0 < 6 < 1. Now, by the Taylor’s theorem,
S > _ —1/2 = S _ —1/2 _
E{Xn(l = X)+m ) = B{X (1= X) +m Y 2 o _picsy +0(m™Y)
= B{(Xn(1 = X)L, 018y } — (1/2)m™!
+ E{ (X1 = X)) 210, o1<5) | +0(m ™)
3(0(1—9)7' =8  ((1— 9))*1

=01 —0)"Y2 |1+

&m 2m

+0(m™1h).
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Combining the above, we conclude the validity of (2.6), which in turn completes the proof
of (ii). O
Theorem 2.2 As ¢ — 0,

: 1/2 Xn —0 2 :
(1) (0(1 —0)/c)/ 50 =0) — Z? in law.

2

_ 2
Xy —0
i) (0(1 —0)/c)'/2E 1
(i) (01~ 0)/c) (a(l - 9)> -1,
where Z is a normally distributed random variable with mean 0 and variance 1.

Proof: To prove (i) we note that

o (K =0\ (M, Xy — Mo)? 1
(0 —0)/e)" (9(1 - 9)) T Me(—0) MO(1-0)) /2

Thus (i) follows from Anscombe’s theorem (Woodroofe, 1982, p. 11) and (i) of theorem 2.1.
Since M > 2/01/2,

X -0\ (it Xar — M6)?
(6(1—6)/)" (au - e>> = (/00 =0 =g

and thus (ii) follows from (i) if (¢/6(1 — 0))1/2(2?11 X — M6)? is uniformly integrable
for 0 < 6 < 1. To prove the latter we make use of Wald’s lemma for second moments
(Woodroofe, 1982, p. 8), together with (ii) of theorem 2.1, to obtain as ¢ — 0

M
E{@Mﬂ—ﬂ»”%E:XM—AMP}::EM@@WI—Qfm—aL
i=1
Further, (i) of theorem 2.1 and Anscombe’s theorem yield
M M
Xy — M6O)?
Xar — MOY(c/0(1 — o))/ — iz M(ch(1—0))"? — 72
(3= Xos = MOF(e/0(1 — 0) Sy M -0
in law.
The uniform integrability follows from the convergence theorem of Woodroofe (1982). O

The performance of the two-stage procedure is usually evaluated by comparing two risks;
one is Rys(c), the risk involved in two-stage estimation of 6 using the proposed two-stage
procedure, and the other is R, (c), the risk associated with the optimal fixed-sample size
ng. As a measure of closeness, the risk efficiency under consideration are defined by

_ RM(C)
e(c) = R (o)

To show that the proposed two-stage procedure is asymptotically risk efficient. i.e.,
Ryr(c)/Rpy(c) — 1 as ¢ — 0. We establish the following theorem.
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Theorem 2.3 Asc— 0
e(c) — 1.

Proof: From (ii) of theorem 2.1 and (ii) of theorem 2.2 it follows that as ¢ — 0

Ru(e) _ E{(Xar —0)?/(0*(1—0)*)} +cEM
Rpy(c) 2(c/0(1 — 0))'/2

3. Monte Carlo Studies

In this section, we conducted to illustrate the performance of the stopping rule in the
proposed two-stage procedure (2.2) as ¢ — 0. We show several choice of the parameter 6,
namely 6 = 0.01,0.02,0.05,0.1 under the loss function (1.1) with ¢ = 0.10,0.01,0.001 and
ng = 25,100, 500, 1000. Note that for the given values of ng, 0, ¢, the starting sample size m
can be computed from (1.2) and (2.1). Simulation results are presented in Tables 3.1-3.4. For
each selected values of ¢, every value in the table is based on 100000 independent replications
with the initial sample size m. Each table contains the selected value of ¢, For each row of
the tables, the optimal stopping time ng, the estimates of series of 8, we computed the mean
05 and the standard deviation Sy . of the 10000 simulated values of 8, the corresponding
average EM, FEy(M/ng) and the risk efficiency e(c).

From Tables 3.1-3.4, we see that the estimate 6,; converge 6. EM is uniformally smaller
than the optimal stopping time ng. That is, the suggested procedure requires smaller sam-
ple size than the fixed-sample procedure. We also observe that as the sampling cost per
observation ¢ becomes smaller, the average random stopping time EM increases.

However, the values of ¢ plays a role as a sample inflation factor in the two-stage pro-
cedure. Analytically, the risk efficiency approaches one as ¢ — 0. The simulation results
provide substantial numerical evidence to conclude that the proposed two-stage estimator
0 performs satisfactorily.

Table 3.1 For § = 0.01

c ng m [2Y; S0, E(M) E(M/no) e(c)
0.1 25 5 0.0094  0.0395 5 0.2379 2.0089
0.1 50 10 0.0097  0.0247 15 0.3125 1.6356
0.1 100 20 0.0100 0.0154 42 0.4258 1.3612
0.1 500 100 0.0100  0.0052 386 0.7733 1.043
0.1 1000 199 0.0100 0.0034 892 0.8921 1.0173
0.01 25 5 0.0098  0.0401 5 0.2379 2.068
0.01 50 10 0.0101 0.026 15 0.3121 1.7896
0.01 100 20 0.0101  0.0154 42 0.4254 1.3571
0.01 500 100 0.0100  0.0052 385 0.7715 1.0511
0.01 1000 199 0.0100 0.0034 893 0.8939 1.0177

0.001 25 5 0.0099 0.0411 5 0.2381 2.1699
0.001 50 10 0.0099  0.0251 15 0.3124 1.6884
0.001 100 20 0.0098  0.0153 42 0.4264 1.354
0.001 500 100  0.0100  0.0052 386 0.7732 1.0446

0.001 1000 199 0.0100 0.0034 894 0.8946 1.0221
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Table 3.2 For § = 0.02

c no m [2Y; 50, E(M) E(M/no) e(c)
0.1 25 7 0.0199 0.046 9 0.3843 1.4384
0.1 50 14 0.0201  0.0286 24 0.4981 1.2117
0.1 100 28 0.0201 0.018 64 0.6445 1.0883
0.1 500 141 0.0200 0.0067 466 0.9321 0.9893
0.1 1000 281 0.0200 0.0046 973 0.9738 0.9889
0.01 25 8 0.0198 0.045 9 0.3881 1.3848
0.01 50 15 0.0201  0.0278 25 0.5156 1.1684
0.01 100 29 0.0200 0.0176 65 0.6520 1.0542
0.01 500 141 0.0201  0.0066 468 0.9364 0.9765
0.01 1000 281 0.0200 0.0046 971 0.9712 0.9773

0.001 25 8 0.0194  0.0445 9 0.3876 1.3586

0.001 50 15 0.0199  0.0275 25 0.5168 1.1485

0.001 100 29 0.0197  0.0175 65 0.6528 1.0462

0.001 500 141 0.0200 0.0066 467 0.9341 0.9836

0.001 1000 281 0.0200 0.0046 970 0.9705 0.9768
Table 3.3 For # = 0.05

c no m [2Y; 50, E(M) E(M/no) e(c)
0.1 25 11 0.0501  0.0545 16 0.6626 0.9686
0.1 50 22 0.0503  0.0359 39 0.7912 0.9484
0.1 100 44 0.0499  0.0238 90 0.9045 0.938
0.1 500 218 0.0501  0.0099 492 0.9853 0.9141
0.1 1000 436  0.0500 0.0069 993 0.9934 0.9017
0.01 25 11 0.0494  0.0539 16 0.6663 0.9548
0.01 50 22 0.0495 0.0352 39 0.7947 0.9287
0.01 100 44 0.0498  0.0235 90 0.9019 0.9262
0.01 500 218  0.0499 0.0098 491 0.9834 0.8998
0.01 1000 436  0.0501 0.007 991 0.9912 0.9152

0.001 25 11 0.0498  0.0541 16 0.6640 0.9584

0.001 50 22 0.0501  0.0354 39 0.7916 0.9331

0.001 100 44 0.0502  0.0239 89 0.8985 0.9383

0.001 500 218  0.0500  0.0099 491 0.9829 0.9101

0.001 1000 436 0.0500  0.0069 991 0.9918 0.8988
Table 3.4 For § = 0.1

c no m 27 S0y, E(M) E(M/no) e(c)
0.1 25 16 0.0994 0.0653 21 0.8692 0.8233
0.1 50 31 0.1007  0.0452 46 0.9282 0.8367
0.1 100 61 0.1003  0.0307 97 0.9706 0.8284
0.1 500 301 0.0998 0.0136 496 0.9928 0.8328
0.1 1000 601 0.1001  0.0096 996 0.9969 0.8321
0.01 25 16 0.1015 0.0651 21 0.8682 0.8199
0.01 50 31 0.100 0.0449 46 0.9332 0.8338
0.01 100 61 0.1002  0.0311 96 0.9671 0.8356
0.01 500 301 0.1001 0.0136 496 0.9925 0.8337
0.01 1000 601 0.1001  0.0095 996 0.9963 0.8248

0.001 25 16 0.1001  0.0647 21 0.8691 0.8162
0.001 50 31 0.1007  0.0448 46 0.9362 0.8335
0.001 100 61 0.0998  0.0308 96 0.9693 0.831
0.001 500 301 0.1001  0.0135 496 0.9932 0.8278
0.001 1000 601 0.0999  0.0094 997 0.9970 0.8175
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