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ABSTRACT

We consider the following type of general semi-parametric non-
linear regression model : y; = f;(6) + ¢,7 = 1,...,n where {fi()} rep-
resents the set of non-linear functions of the unknown parameter vector
¢ = (0,....,6,) and {¢;} represents the set of measurement errors with
unknown distribution. Under suitable finite-sample, small-dispersion

" asymptotic framework, we derive a general lower bound for the asymp-
totic mean squared error (AMSE) matrix of the Gauss-consistent esti-
mator of §. We then prove the fundamental result that the general non-
linear least squares estimator (NLSE) is an optimal estimator within
the class of all regular Gauss-consistent estimators irrespective of the
type of the distribution of the measurement errors.
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1. INTRODUCTION
We consider the following type of general non-linear regression model :
yi:fi(6)+ﬁi, 1=1,...,n, (11)

where {f;(0)} represents the set of non-linear functions of the unknown pa-
rameter vector & = (6y,...,8,) of known functional form and {e;} represents
the set of uncorrelated measurement errors with mean zero and constant vari-
ance but with otherwise unknown distribution. One of the most important
problems in this model is to find the efficient method of estimating regres-
sion parameters § which minimizes the influence of the unavoidable measure-
ment errors. The research on this important problem has been conducted in
the literature along the two different directions depending on the asymptotic
framework used in evaluating the performances of alternative estimators.

In the usual large-sample asymptotic framework, we assume that the sam-
ple size n is large and try to find the asymptotic distribution of the reasonable
estimator such as least-squares estimator. Typical results in this direction
are Hartley and Booker (1965), Jennrich (1969), Wu (1981). Essentially they
established consistency and the asymptotic normality of the non-linear least-
squares estimator as sample size n tends to infinity under suitable regularity
conditions. As closely related researches, we can also mention the important re-
cent works on the Quasi-likelihood estimators in the GLM (Generalized Linear
Model) by, among others, Wedderburn (1974) and McCullagh (1983). Espe-
cially McCullagh (1983) showed that Quasi-likelihood estimators are optimal
in the class of asymptotically unbiased estimators under appropriate regularity
conditions as n tends to infinity.

On the other hand, in the so-called finite-sample small-dispersion asymp-
totic framework, we assume that the sample size n is finite but instead suppose
that the variance of the measurement errors o2 = Var(e;) is small. These con-
ditions are typically satisfied for the experimental data from the fields such

as astronomy, survey, geophysics, chemistry, and physics where high cost of
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the experiment does not allow large number of experiments but each experi-
ment can be conducted by the instrument with relatively high precision. As a
first related work in this area we can mention Villegas (1969) who considered
the problem of efficient estimation in the non-linear functional relation model
when there exist replicated observations. Recently Jorgensen (1987) also made
it clear that two different asymptotics are possible in the so-called exponential
dispersion model depending on the validity of the two different assumptions
on the magnitude of the sample size n and that of the dispersion parameter

a?.

In this paper we consider the problem of optimal estimation of the Eu-
clidean parameter ¢ of the semi-parametric non-linear regression model (1.1)
from the finite-sample small-dispersion asymptotic viewpoint and try to estab-
lish a new small-sample optimality of the non-linear least squares estimator
which is completely independent of the type of the measurement errors as long
as they are uncorrelated. This small-sample optimality result is in sharp con-
trast with the classical large-sample result of optimal estmator which depends

heavily on the type of error distribution.

Specifically, motivated\ by the equivalence of the unbiasedness and the
Gauss-consistency in the Gauss-Markov theorem and by the usefulness of the
Fisher-consistency in the multinomial estimation problem, we introduce the
fundamental concept of Gauss-consistency as a most natural non-linear gener-

alization of the unbiasedness concept of the linear model.

We then derive a general lower bound for the AMSE (Asymptotic Mean
Squared Error) matrix of the regular Gauss-consistent estimator. We also
show that non-linear least-squares estimator (NLSE) is Gauss-consistent and
has the smallest AMSE matrix among all regular Gauss-consistent estimators
irrespective of the type of the error distribution. We also discuss some examples
including small-sample calibration problem as applications of our optimality

results.
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2. MAIN RESULTS

As a most natural non-linear extension of the linear-unbiased estimator
in the linear model, we first introduce the fundamental concept of Gauss-

consistency as follows :
Definition 1. We call an estimator h(y) of 8 is Gauss-consistent if

R(f(0)] =6 forall 6 € O, (2.1)

where ' = (y1,...,¥s), f(0) = (f1(6),..., fa(0)) and © is a parameter space
in RP.

Remark 1. In the linear model, Gauss-consistency is equivalent to the

unbiasedness for linear estimators.

Remark 2. In the multinomial set up, Gauss-consistency reduces to the
usual Fisher-consistency. See Neyman (1949) and Bemis and Bhapkar (1983)

for more details on this topics.

Remark 3 (Invariance Property). In contrast to the unbiasedness,
Gauss-consistency is preserved under arbitrary non-linear transformation of

the parameters.

Remark 4. On the insightful discussion of the history of the least-squares
method and the relevance of the Gauss-consistency instead of the unbiasedness

as a fundamental requirement of the reasonable estimator, see Sprott (1983).
We also need the definition of the regular estimators in the following.

Definition 2. We say a Gauss-consistent estimator h(y) of 0 regular
Gauss-consistent if h(y) is a continuously differentiable function of ¥ in some

neighborhood N C R™ of the set S = {f(f) € R";6 € ©}.

Since we are interested in the asymptotic distribution of the Gauss-consistent
estimator as the dispersion parameter o gets small i.e. as ¢ — 0 for fixed finite

sample size n, we will assume the following regularity conditions in this paper.
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Ay : Ois an open set in RP.
Az i Let e, =0Z;,i=1,...,n. Then
L{Z]6] — L[U|0] as ¢ — 0,

where Z' = (Zy,...,2Z,) , U = (Uy,...,U,) and E[UU] = I = [6ij]isan n x n
identity matrix.
Aj : The mapping f(6) from © into R™ is homeomorphic ( that is one-to-

one and bicontinuous) and continuously differentiable.

Now we derive a general lower bound for the AMSE matrix of the regular

Gauss-consistent estimator of 6.

Theorem 1. ( Lower Bound for AMSE ) Let the conditions A, A, A,
be satisfied. Let X(8) = Df(6) = [0f./86;] be the n x p Jacobian matrix of
f(0) with a full rank p < n. Let h(-) be a regular Gauss-consistent estimator
of 6 with a p x n Jacobian matrix H(f(0)) = [hi;(f(0))] = [0h;/dy;]. Then we

have :

AMSEy[h(-)] = H(f(0))H'(f(8)) > [X'(6) X (6)]* (2.2)
and the equality holds if and only if H = (X'X)~'X’ where A > B means

A — B is positive semidefinite matrix.
Proof. By the Gauss-consistency and the regularity of h(-), we have :
hly) =6 = h(y) = h((8)) = H((0)+ Ae)fy — f(6)] for some 0 < A < 1. (2.3)
Multiplying both sides of (2.3) by o=!, we obtain :
77 [hly) = 0] = H(f(0) + Ae)o ™[y — f(6)) 5 H(f(8))U as & — 0.

Since

AMSE[h(-)] = E[(HU)(HU)] = HE[UU'|H' = HH',

we get the first part of (2.2). As for the proof of the second part of (2.2), we
start with the identity (2.1) :

h[f(8)] = 0 for all 6.
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Differentiating above identity with respect to 6, we obtain the following basic
identity :
H(F(0))X(6) = I,. (2.4)

If we let H = (X'X)~1X’, then we have following identity :

HH' =HH + (H - H)(H - HY'. (2.5)
Here we used the fact that :
HH-H = X'X)'X'(H-H) =0
which follows directly from (2.4). Identity (2.5) together with the fact HH =
[X'X]™! completes the proof.

Next we will construct a regular Gauss-consistent estimator of § whose
AMSE matrix is the same as the lower bound of (2.2). Essentially we will show
that non-linear least-squares estimator (NLSE) is a regular Gauss-consistent

estimator and its AMSE matrix attains the lower bound.

A

Now we introduce a non-linear least-squares estimator (NLSE) 6(y) which is

defined formally as the unique solution of the following system of the equations:
F(y,0) = X'(0)[y — f(6)] =0 (2.6)

if there exists an unique solution and is defined arbitrarily otherwise. Now we

will show that é(y) will be an optimal Gauss-consistent estimator of 6.

Definition 4. We call a regular Gauss-consistent estimator h{y) of 4 to
be optimal if its AMSE matrix attains the lower bound (2.2).

We also assume the following regularity condition :
A4 : X(0) is a continuously differentiable function of 6 in ©.

Theorem 2. Under the assumption A; through A4 there exists a neigh-

borhood N of the set S = {f(#) € R™;6 € O} and an unique function 0(y)
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from R™ to RP continuous in N such that

0[f(0)) =0 for all 6 € ©
and
F(y,0(y)) = X'(6(y))ly — f(8(y))] =0 for y € N.

Moreover

Lle™ (0(y) — 6)|8] — L[V|6] as & — 0, (2.7)
where V' is a p x 1 random vector with E[VV'] = (X'X)".

Proof. The proof closely parallels that of the theorem 1 in Section 3.2
of Ferguson (1958). By the lemma 3.1 of Ferguson (1958) we obtain the first
part of the theorem immediately if we let F(y,0) = X'(6)[y — f(8)]. Then
expanding F(y,0) about the point (y) to first-order, we have the formula :

F(.0) = Fly,00) + ([ B0+ 20 -0)a\|[o- b)), (29

where Fy(y,0) = [0F(y,0)/86,) is the p x p Jacobian matrix of F(y,0) with
respect to §. Multiplying (2.8) by 6! and letting o — 0, we have

L7} (B(y) - 0)|0] - LI(X'X)7 X'U9).
Here we have used the fact that as ¢ — 0 , H(y) — 6 and thus
1 . X - ,
/O Fy(y,0(y) + M0 — 0))dX = /0 Fy(£(8),8)d) = —X'X.

This completes the proof of (2.7) if we let V = (X'X)-1X'U.

Remark 5. If we let ¢ = n='/2 and if the random vector I/ has the normal
distribution N, (0, I), then it can be easily shown that the Gauss-consistency is
equivalent to the usual consistency in probability as n — oo and above results
reduce to the corresponding results of the BAN theory developed by Neyman
(1949) and further extended by Ferguson (1958), Bemis and Bhapkar (1983).
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Remark 6. If we have correlated measurement errors and if their covari-
ance matrix & = E[UU’] does not depend on 6, then §(y) can be defined as a
weighted least squares estimator (WLSE) of 4 :

~

d(y) = arg minly — FOT [y — £(0))
In this case, we can also obtain similar optimality result by simple linear

transformation.

3. EXAMPLES AND DISCUSSIONS

In this section we give some examples which illustrate the wide range of
applications of the new optimality results developed in section 2. We also dis-
cuss some possible extensions of the finite-sample small-dispersion optimality

results to more general class of models such as GLMs.

Example 1 (Errors-in-variables model). Consider the following model:

yi = o+ Buite

T, =u;+ 6, (3.1)

where {¢;}, {6;} are uncorrelated measurement errors with E(e;) = E(6;) = 0,
Var(e;) = 0%, Var(6;) = o}, i = 1,...,n and o./os = fixed number. Here
we note that ' = (a,fS,u1,...,u,) and the regression functions {f;(8)} are
non-linear functions of 6 because of the presence of non-linear terms {fu;}
in (3.1). Under these assumptions we can show that the usual least squares
estimators of a and f are optimal estimators among the class of the regular
Gauss-consistent estimators irrespective of the type of the distribution of the

measurement errors {¢;} and {6;} as ¢ — 0.

Example 2 (Calibration). Here we consider the following calibration

model :

yi =a+fzi+e

y =a+ fz+e, (3.2)
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where measurement errors {¢;},¢ are mutually uncorrelated with E(e;) =
E(e) =0, Var(e;) = Var(e) = 0?1 =1,...,n.

Note that here we have § = (¢, 3, ) and we again have a non-linear problem
because of the existence of non-linear term {#z} in (3.2). Then it can be shown

that two commomly used estimators of z, the ordinary estimator :
t=2+(y—9)/b

and the inverse estimator :
E=14(y—9)/b

where b = S3,/Sse and b* = S;, /Sy, with S;p = Y (zi — )%, Szy =
Sioi (@ — &)(yi — y) , are both optimal regular Gauss-consistent estimators
of z irrespective of the type of the distribution of the measurement errors as

o — 0. See So (1994) for more details on this problem.

Remark 7. When the covariance matrix of the measurement errors
Y(#) = E[UU'] depends on 6 as is usually assumed in GLM and if there
exists a consistent estimator ¥ of £(), we can modify the definition of the
regular Gauss-consistent estimator suitably and still get the similar optimality
results. See Bemis and Bhapkar (1983) for this version of the optimality results
in the asymptotically normal case. This topic and other related topics will be

pursued in the subsequent paper in more detail.

Remark 8. Note also that we can use somewhat weaker set of regularity
conditions than A; through A4 and still get the similar optimality results. See
Bemis and Bhapkar (1983) for the weaker set of conditions in the asymptoti-

cally normal case.
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