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A FRAMEWORK TO UNDERSTAND THE ASYMPTOTIC
PROPERTIES OF KRIGING AND SPLINES

EvA M. FURRER! AND DougrLas W. NYCHKA?

ABSTRACT

Kriging is a nonparametric regression method used in geostatistics for
estimating curves and surfaces for spatial data. It may come as a surprise
that the Kriging estimator, normally derived as the best linear unbiased esti-
mator, is also the solution of a particular variational problem. Thus, Kriging
estimators can also be interpreted as generalized smoothing splines where
the roughness penalty is determined by the covariance function of a spatial
process. We build off the early work by Silverman (1982, 1984) and the
analysis by Cox (1983, 1984), Messer (1991), Messer and Goldstein (1993)
and others and develop an equivalent kernel interpretation of geostatistical
estimators. Given this connection we show how a given covariance function
influences the bias and variance of the Kriging estimate as well as the mean
squared prediction error. Some specific asymptotic results are given in one
dimension for Matérn covariances that have as their limit cubic smoothing
splines.

AMS 2000 subject classifications. Primary 62M30; Secondary 65D07.
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1. INTRODUCTION

A common method in the analysis of spatial data is a geostatistical estimator
known as Kriging. Although Kriging is typically derived as a best linear unbiased
estimator it can also be viewed as a nonparametric curve and surface estimator.
Given this later perspective, it is of interest to understand Kriging in terms of the
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large sample properties such as the asymptotic variance and bias that are well
established for kernel estimators. The key idea developed in this work is that
Kriging estimators can be interpreted as generalized splines and the asymptotic
techniques similar to those described in Nychka (1995) can be brought to bear
on the Kriging estimators.

The problem one is faced with in nonparametric regression is to estimate an
unknown function, g, on [0,1], for which the observations y; are supposed to
depend on the “locations” x; following the model:

yl:g(w1)+817 i:17"',na

where the &; are i.i.d. random errors with common variance o2. Note that we
use the interval [0, 1] without loss of generality. The solution to this problem by
either spline or kernel methods can be written as

§(e) = - 3wl 7y (1.1)
=1

for a weight function w and is therefore a linear function of the data. In contrast
to kernel methods the weight function of the smoothing spline estimator is not
known in closed form but the techniques presented in Nychka (1995) can be used
to approximate it. In the same spirit we want to represent the Kriging estimator
of a Gaussian process g at an unobserved location x as a weighted average of the
observations at the locations x; using a weight function w(x,x;), which we call
the Kriging weight function.

The main contribution of this paper is the identification of a functional form
approximating w for Kriging estimators that is derived from the spatial process
covariance function and is a reproducing kernel. We term this approximation
the equivalent kernel because in the case of stationary covariances and uniformly
distributed locations, it is similar to a kernel estimator. This paper does not give
a rigorous development of specific results but rather lays out a general framework
for the asymptotic theory. To this end we conjecture the large sample behavior
for the mean squared error of Kriging estimators and also point to verifying a
key condition that will allow the rigorous theory that has been applied to one
dimensional smoothing splines to be extended to these more general estimators.

As an introduction and to fix ideas, we start by discussing the structure of the
classic smoothing spline problem, focusing on the details which will be important
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for further developments. Also, we will outline the equivalence between a Kriging
estimator and a smoothing spline estimator.

1.1. Classic cubic smoothing splines and reproducing kernels

For normal errors the maximum penalized likelihood estimate is given as the

minimizer of
n

1
> (- @)’ + /\/O ¢ (z)*dz (1.2)

i=1

over all twice differentiable functions on [0,1]. The parameter A controls the de-
gree of smoothness via the penalty term, which in this case penalizes roughness
of the estimated function using its total curvature. The solution to this mini-
mization is the standard cubic smoothing spline although the actual form as a
piecewise cubic polynomial is not important to a general discussion. The form of
the roughness penalty using second derivatives implies that linear functions will
result in a penalty of zero. In order to simplify the discussion, we will decompose
@ into the sum ¢(z) = B1 + Baz + f(z) with f(0) = f/(0) = 0, then (1.2) is given
by

n 1
min [;{(%‘“ﬂl ~ Baw) — fla)} A /0 f"<x>2dx], (13)

where H is a space containing all functions that have square integrable second
derivatives on [0,1] with f(0) = f’(0) = 0. Since only the sum of squares is
affected by this complication, we can continue our discussion, which is mainly
concerned with the penalty term, without further consideration of the null space.
The full estimator can be derived by first minimizing over H and then over g,
this results in a generalized least squares estimate for the null space parameters.
We now identify the penalty term above with an inner product on H given as

1
(f b = /0 £ (@) (2)d (1.4)

and we can express the minimization criterion over f in (1.3) as
n

S (vt~ £@) 4 AP, (15)

1=1

where y; = (y; — B1 — Bai).
How does one characterize this seemingly difficult minimization over a func-

tion space? The concept of a reproducing kernel provides an explicit and elegant
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solution to this problem. The set of functions H together with the inner product
(1.4) is a Hilbert space with reproducing kernel k(-,-) given by

%u2v - %u3, u<v,

k(u,v) = L
VU — U7, u=>v.

The function &(-,-) is defined as a reproducing kernel if it satisfies
(k(z,), f) = f(z) and as a special case (k(u,-),k(v,")) = k(u,v),

i.e., k evaluates a function using the inner product of the Hilbert space. It will
also “reproduce” itself under the inner product. In the case of the kernel given
above this can be verified simply using integration by parts.

LEMMA 1.1. (Generalized smoothing spline). If H is a Hilbert space with
reproducing kernel k then the solution § of the minimization problem (1.5) is of
the form

n
o) = Y0t
with ¥; = k(-,z;), fori=1,...,n and c;:Jflﬁcients 0; obtained by minimizing
min [Ily* — WO + 6T We} (1.6)
with y* = (y,...,y5)T, W= {W;i} = {k(zi,z)} and 6 = (61,...,6,)7.

PrOOF. The proof is by contradiction. Suppose gother is the minimizer but is
not equal to §. Let ¢* be a function of the same form as § but agreeing with gother
at the observation points. The residual sums of squares are the same for these
two estimates. Let h = gother — ¢*, then h(z;) = 0 and using the reproducing
property of k we have:

<gotheragother> = (g* + h,g* + h>

= (g%, 9") +2(¢*,h) + (b, h)

= <g*;g*> + Zei<k("$i)v h> + (hv h>
=1

=(g*,9") + > _ Oih(z:s) + (h, h)

=1

(9%:9%) + (. h)
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Thus the minimization criterion evaluated at gogher is greater than or equal to
the value at g*. But we assumed that goiner was the minimizer and so one obtains
a contradiction. Therefore, the solution § of the minimization problem (1.5) is
a linear combination of the values ¥ (z;) = k(z;, zx), i-e., §(x;) = (WE];. Then
restating the minimization problem in matrix notation (1.6) is straightforward
using the reproducing property of k to simplify the penalty term, since A(g, g) =
A2 005 k(- mi), k(og)) = NS, ;5 0i05k(z5, 20). .

Taking derivatives with respect to 8 in (1.6), setting them equal to zero and
solving for @, resulis in

6 = (W + D) "ty*.
The estimated function values at the observed points z1, ..., z, are given by
g=(§(x1),...,0(zn))T = WO = W(W +A)"ly* = Ay,

i.e., the smoothing spline approach leads to a linear smoothing procedure.

For completeness we now add back in the linear term that was absorbed into
y* and so derive the full cubic spline estimator. Substituting the minimizer over
f back in (1.3) one obtains, after some algebra,

B = (XT(W 4+ AD)71X) ' XT(W + AD)y,

where X contains the value one in its first column and z1,...,z, in the sec-
ond column, and y = (y1,...,yn)7. The reader can interpret this estimate as a
generalized least squares regression estimate where the errors have a covariance
proportional to (W+AI). In particular the matrix W, derived from the reproduc-
ing kernel, is formally being manipulated as a covariance function for a random
process. This observation provides a link into understanding the connection of
splines with Kriging. In the next section we will see that the covariance function
plays the same role as a reproducing kernel.

1.2. The classical Kriging problem

For the Kriging problem our initial context is very different, we have noisy
observations of a spatial field

yi = g(xi) +ei, 1=1,...,n,
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where g is a zero mean Gaussian process on a domain P C R¢, d typically 1 or
2, and ¢; are i.i.d. normal errors, independent of g and distributed according to
a zero mean normal distribution with variance o2. Without loss of generality we
assume that the volume of D is 1. The covariance of the Gaussian process g is
assumed to be
Cov(g(x), 9(x')) = k(x, x')

for an appropriate covariance function k. Much of the statistical craft in geo-
statistics is in finding good representations and estimators for k&, but we will not
address this aspect here. Given k, the Kriging problem is to find a prediction of
the spatial field g at the location x based on the observations yi,...,y,. This
can easily be achieved by using the properties of the multivariate normal distri-
bution. A generalization of the following to more than one prediction location is
straightforward. For y = (y1,...,9,)7 we have that

Y\ onfo [ Covy)  Cov(y,g(x))
9(x) "\ Cov(g(x),y) Cov(g(x),9(x))
Then the prediction of g(x) can, for example, be defined as the conditional ex-

pectation of g(x) given the observations. For g = (g(x1),..., g(xn))T, the con-
ditional density is given by:

l9(x) |y] = N (Cov(9(x)g) Covly,y) 'y,

Cov(g(x), g(x)) ~ Cov{g(x), &) Cov(y,y) ' Cov(g, g(x)) ) (1.7)

Now examine the conditional mean in more detail:

Cov(g(x),g)Cov(y,y) 'y = Cov(g(x),g)é = Z k(x,x;)6;,

where as before § = (W + AI)~ly with [W];; = k(xi,x;) and A = o2, This is
exactly the form of the spline type estimator discussed in the previous section. We
have now shown algebraically that if one solves a spline minimization problem
where the inner product has the reproducing kernel k& then the solution is the
Kriging estimator.

If one considers the estimates of g at the observation points then the vector of
predictions is Sy, where the matrix S = Cov(g, g)Cov(y,y) ! is usually known
as the smoothing matrix associated with Kriging and contains in its rows the
so-called Kriging weights.
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In summary, we have shown that the Kriging estimator is actually a smoothing
spline estimator on a Hilbert space with reproducing kernel corresponding to
the covariance function of the underlying Gaussian process (since the matrix W
is determined by k). This statement will be made more rigorous in Section 2
providing the appropriate variational problem and inner product.

1.8. Outline

The previous two subsections served two purposes. On the one hand, the
smoothing spline approach to function estimation has been introduced together
with the use of reproducing kernel Hilbert spaces. On the other hand, it has been
made intuitive why the Kriging estimator is another special case of this general
approach. Section 2 will rigorously show how the Kriging problem can be stated
as an analogous variational problem and how the results of Nychka (1995) can be

transferred to Kriging. Section 3 gives details for some special cases of stationary
covariance functions.

2. AN EQUIVALENT KERNEL FOR KRIGING

2.1. Variational problem and reproducing kernel of the Kriging problem

Based on the preceding discussion from Section 1.1 let

n

L) =3 (i = F)* + M ), (21)
i=1

where the penalty inner product (-,-) is such that the correlation function % is
the corresponding reproducing kernel. Then the estimator is the minimizer of
L(f) over all f so that (f, f) < oc. Based on the previous discussion this has
the solution § = Y .-, 6;%s, where v; = k(-,x;), for i = 1,...,n. Analogously to
the developments of Section 1.1, this solution can then be represented in matrix
notation and by construction coincides with the Kriging estimator as given in
Section 1.2.

Our first objective is to define an inner product on a Hilbert space of functions
having the correlation function & as reproducing kernel. If one has a positive
definite kernel then one can always implicitly define an inner product such that
the kernel is the reproducing kernel and also extend this to a Hilbert space (Aubin,
2000, Theorem 5.9.2). However, in our case we would like to work with an inner
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product that is also interpretable with respect to integrals. Accordingly, we define
the relevant inner product via the integral operator Kf(x) = [ k(x,x) f(x') dx’
as

i f) = /D (IC V2 1) () (/2 f3) () dx

for all functions f; and f; in the space H of functions for which (KX~1/2f) exists

~1/2

and is square integrable over D C R%. To derive K we use a decomposition

of k based on eigenvalues and eigenfunctions:

o0
Z Av @y (X)<PV(XI)7
v=1
with A1 > A2 > -+, ¢, Ly, in L2(D) and / 02 =1.
D

This decomposition is usually known as Mercer’s theorem, which uses the eigen-
functions of the integral operator associated to k. Theorem 11.3.1 of Aubin (2000)
is an analogous result on compact operators, Mercer’s theorem then follows since
the integral operator associated to k is compact (Aubin, 2000, Proposition 12.1.3).
Using this decomposition we have that

_ ; Mooy (x) /D oo (%) F(x) dx

and by orthogonality of the ¢,

’C_1/2 — = /\—1/2 Y Y / N dx'.
£= N0 [ o)) dx

v=1

Therefore, & is the reproducing kernel since

(k(t,), k(s,)) = / (K™Y2k(t, ) (%) (K 2k(s, -)) (x) dx

D

= ZZA V2ys 1/2(/ J(X)k(t, x') dx)

v=1 p=1

x(/ <pﬂ(x/)k(s,x/)dx’)(/D%(x)cp“(x)dx)

= Z)‘MPV (t)pu(s) = k(t,s),
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where we used the orthogonality of the functions ¢, and the decomposition of k.
We have now constructed an inner product such that k is its reproducing kernel.
This means that minimizing (2.1) is in fact equivalent to the Kriging problem.

In closing one might ask: What exactly is the Hilbert space implied by this
mnner product? We know that H will contain finite linear combinations of the
form f = >, apk(,, ) and in fact H is just the completion of this class of
functions. A more precise description can be inferred by considering the Fourier
transform of k£ when the covariance is stationary and this allows one to identify
the differentiability of members of H.

2.2. The Kriging weight function

This is the main insight of this paper: we represent the minimizer of (2.1) as a
weighted local average of the observations, i.e., g(x) =n"1 Y7 | w(x,x;)y;, sim-
ilar to the spline weight function representation of the smoothing spline estimate
in Nychka (1995). The weight function can be characterized by the first order
conditions for the minimizer of £. This idea was originated by Cox (1983) and
was also the basis for Nychka (1995). For any function h in some dense subset of
H, the minimizer of (2.1) (with smoothing parameter X - n) satisfies the equation

d ...
Eﬁ(g +¢h)

=0 _% > (i — a(x0)) h(x:) + 2X(g, k) = 0. (2.2)
=1

Examining (1.1) it is trivial to see that w(-,x;) is the “estimate” for the data
yx = n for k = j and y = 0 otherwise. Substituting these synthetic data into
(2.2) the exact weight function must satisfy the following identity

3wl x5 h(36) + A7), ) = hisxy).
=1

Furthermore w must be a reproducing kernel for the inner product, (1/n) >~ ;
Ji(x:) x fa(x;) + A{f1, f2), and so is a symmetric function. We assume that the
empirical distribution of the x; tends to a uniform distribution on D for n — 0.
Now add and subtract the continuous integral approximation to the discrete sum
and group the terms

1 n
(E;w(xi,)cj)h(xi)-/Dw(t,xj)h(t)dt>

+/ w(t, x;)h(t) dt + Mw(-, x;), h) = h(x;). (2.3)
D
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The final step in this derivation is to substitute a particular set of functions for
h. Let G be the reproducing kernel with respect to the inner product defined by

(Fr Fa)n = /D £1(6) f2(8) dt + Mf1, o).

Substituting G(,u) into (2.3) and using its reproducing property now gives

n
w(u, x;) = G(xj,u) + (/Dw(t,xj)G(t,u) dt — %Zw(xi,xj)G(xi,u)> .

i=1
Thus provided that the difference between the integral and sum is negligible G
will be a good approximation to w. Moreover G has a simpler form as it is
defined through a continuous integral rather than a sum depending on the exact
distribution of the observation locations. The analysis in Nychka (1995) gives
conditions under which the approximation will be accurate. Even though the
final application in that work was for a specific linear spline, the basic theorem
establishing bounds on the error is more general. Our opinion is that the main
hurdle in applying this approximation to Kriging type estimators is to establish
an assumption termed the exponential envelope condition (EEC). This condition
is on G and facilitates an inductive argument to infer that the bounds on the
difference are asymptotically negligible relative to G. For example, in the case of
mth order smoothing splines the EEC requires, that there exist positive constants
a, €, K < oo such that for all ¢, 7 € [0, 1],

K [t — 7|
| < Ni/2m XP ( —(a—¢) NV )’

0 K |t — 7]
&G(t, 7')’ < 2/ exp ( —(a+ 8)—)\1/2m ),

5107 < s e (- @957

if the partial derivatives exist for all ¢,7 € [0,1]. Otherwise, if (8/0t)G is not
continuous when ¢ = 7, then

= 6(7)

In the following we will be using Fourier transform techniques, which re-

0
ret— - aG(ta T)

1

T=t+ A

quire that integrals are taken over R%. Our main interest is in observations
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taken on a bounded domain and so we briefly sketch the link between those
two. First, we observe that the penalty inner product (-,-) can be taken over R%
without changing the resulting estimator since it does not depend on the obser-
vation points. Secondly, denote by G the reproducing kernel of the inner product
Ip fi() fo(x)dx + A{f1, f2) and by G* the reproducing kernel of the inner prod-
uct [pa fi(x)fo(z)dz + X(f1, f2). Suppose that g is the uniform density over the
domain D, which we assumed to have volume 1, then by the properties of both
G and G* it is easy to show that

G*(u,v) = G(u,v) + < G*(z,v)G(z,v)(q(z) — 1)dac).

Rd
This gives an approximation for one kernel with another and the error is an
integral with respect to G*. Therefore, we can conclude that showing an EEC for
G* implies that it holds for G as well. One disadvantage of this approximation is
that it will only be valid for the estimator in the interior of the domain and will
not take into account edge effects in the estimator.

In summary we have identified an approximation, G* to w that facilitates an
asymptotic analysis of the variance and bias of a Kriging estimator. This approx-
imation is a reproducing kernel and the main challenge is to be able to verify an
EEC for G*. The next section tackles some simple covariances to illustrate how
to apply these ideas. Before doing so we give a summary of how to use G to infer
asymptotic properties for the estimator.

2.3. Mean squared error of a Kriging estimator

Given the approximation described in the preceding section it is of interest
to derive properties of these estimators. It should be emphasized that these are
still conjectured relationships but we also believe that a rigorous justification is

accessible given the results for splines and also the examples in the following
section.

Under the approximation
1 n
9(x) ~ - 21 G* (%, %:)y;
i

we approximate the variance

o2

Var(§(x) | g) ~ e G*(x,u)%du
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and the bias as

E(9(x)|g) — g(x) ~ y G*(x,u)g(u)du — g(x).

Here we have approximated the discrete sum with an integral and a rigorous justi-
fication is possible. This type of analysis is supported by the same methods used
to justify the equivalent kernel approximation and follows the same arguments
as in the proof of Theorem 2.2 in Nychka (1995).

In the usual case of kernel estimators the variance and squared bias can be
combined to give a mean squared error (MSE). However, for Kriging estimates it
is the convention to also take the expectation over g. Using the representation of
g(x) in terms of the kriging weight function w and the orthogonality of the errors
€;, we have that

B((660 ~ 900)*9) = (2 S wtxxlax) — 9)” + % Dl xo
i=1 1=1

Approximating w as above by G* and substituting integrals for the discrete sums,
we obtain the sum of the squared bias and variance above for this conditional
mean squared error. On the other hand, taking expectation over g, expanding
the square and using the notation w = n~! (w(x, X1), ..., w(X, xn))T, we obtain

E((g(x) — g(x))z) = WTCov(g, g)wW — 2Cov(g,g(x))TW

+Cov(g(x), 9(x)) + o*wlw

= w’ (Cov(g, g) + o°I)w — 2Cov (g, g(x))TW
+C0v(g(x), g(x)),

Since §(x) = w’y and on the other hand from Section 1.2 g(x) = Cov(g(x), g) X
Cov(y,y) ty, we have that w = Cov(y,y) *Cov(g, g(x)). Plugging this into the
last equation and rearranging leads to

E((Q(X) - g(X))2) = Cov(g(x), g(x)) — Cov(g(x),8)Cov(y,y) ' Cov(g, g(x))

and this is the same as the conditional variance in (1.7).

With the identification w = Cov(y, y) 1Cov (g, g(x)), approximating w in w
by G* and again substituting an integral for the discrete sum we are led to the
approximation:
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. N
MSE(g(x)) ~ k(x,x)— - ;G (x,%xi)k(x,%;)
~ k(x,x) — G*(x,u)k(x,u)du. (2.4)
R4
The actual error terms in this expression are identified in Section 3.3 when our

theory is applied to a one dimensional example with the Matern covariance.

3. STATIONARY COVARIANCES

We start by assuming a stationary and isotropic covariance function, i.e.
k(x,y) = k(|x — y|). By construction we have then as well that the equivalent
kernel is a function of the radial component only, G(x,y) = G(|x — y|). For the
special cases considered in this chapter, we obtain this result by straightforward
calculation. We will be applying Fourier transform techniques in order to obtain
results on G, therefore we assume the domain to be all of RY.

3.1. Equivalent kernel

For stationary covariances the operator Kf(x) = [pak(x —y)f(y)dy is a
convolution of the functions k and f. Therefore, denoting by F the Fourier

transform, we have that (K f) = F(k)F(f). We define the operators K~/ and
K2 vy

K-V f = (ff;)fl)ﬂ) and  K'2g = F 1 (F(g)F(k)'/?)
for all f, g, functions on RY, for which F(f), F(g) exist and (F(f)/F(k)*/?),
(F(g9)F(k)/?) are square-integrable. Since we are essentially concerned with
covariance functions satisfying F(k) o |w| ™, |w™/2F(f)(w)| tends sufficiently
quickly to zero for rapidly decreasing f € C*°(R¢) such that the inverse transform
exists for those f. The generalization to square integrable functions is by density
of C°(R%) (Dym and McKean, 1972, Chapter 2.2). These operators can actually
be interpreted as the square root of K and its inverse, since

FKV2(KT20) = F(f) and FKVAKY2D) = FKS).

Using Parseval’s theorem, this implies that the inner product for the penalty
satisfies
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(ted = [ (TR 1) (0 dx

_ /R (FOCY2 1) @) (F V2 £2)) () oo
_ [ FU@FE)W)

e FR)(W)
for all functions f; and f> in C*°(R?). Furthermore, again using Parseval’s the-

orem, the inner product for which we aim to determine the reproducing kernel

satisfies

(i, ) = / £1(6) fa8) dt + A1, fo)

/ffl F(f2) w)dw+A/ (1) “’lz)f(‘i’?)(“’) dw

1
= [ F @) F (@)@ (1+ 2 ggm707) 4
Hence, the reproducing kernel G is characterized by
(G- = [ F@FG(- =) w) (14 A pry) dw = hx

for arbitrary h € C*°(R%). On the other hand, we have by the Fourier inversion
theorem that for all h € C°(R%)

F(h)(w)e™™ dw = h(x;).
Rd

Therefore, we conclude that

FG( - —5))e) (L + siy) = ¢
— ]-'(G)(w):(l-i—)\ml)—(—‘j))_l, (3.1)

i.e., the Fourier transform of the reproducing kernel we want to determine is essen-
tially determined by the Fourier transform of the underlying covariance function
and we will look at it in more detail in the next section under specific covariance
models.

3.2. Ezponential envelope condition for the Matérn class of covariances

The Matérn class of covariances is given by

¢

k(r) = W—l—(ar)”K,,(ar), forg >0,a>0,vr>0andr € R
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and the corresponding Fourier transform, i.e., the spectral density, is

oT(v +d/2)a?
[(v)nd/2(a2 + w2)r+d/2’

Fk)(w) =

(3.2)

This parameterization is valid for any dimension d, where the arguments r and
w correspond to radial components in state and frequency space respectively.
Without loss of generality, we assume ¢ = 1. Plugging (3.2) into (3.1)

1

:F<G)(w) = 1+ ()\/C)(a2 +w2)u+d/2’

(3.3)

where ¢ = ['(v + d/2)a®7n~%?/T(v) depends on v, a and d.

3.2.1. One dimensional smoothers with the Matérn and cubic splines. First we
consider d = 1 and v = 1.5, therefore the exponent in (3.3) is 2 and we see
below that we have a correspondence to smoothing splines of order m = 2, i.e.,
roughness penalties based on second derivatives. In this case it is possible to
calculate the inverse transform G by using 3.731.1 of Gradshteyn and Ryzhik
(1965):

G(t) = % exp(—At) (B cos(Bt) + Asin(Bt)), (3.4)
where A = \/(\/m+ 0?)/2 and B = \/(\/m — a?)/2. The order
of A in this function is A™'/4 and an EEC for G follows straightforwardly.

It is interesting to compare this result with thin plate splines. Using F(A f)(w)
= w*F(f), the same type of grouping of the penalty and the second term in the
variational inner product as for Kriging and 3.727.1 of Gradshteyn and Ryzhik
(1965), we obtain

FOW) = 15
d G(t) = —— t
an ® = 5=~ Z55)

t . t
x(cos(—m)—i—mn(—W)). (3.5)
Therefore, we consider this special case of Kriging and a thin plate spline of
order 2 in d = 1 to be equivalent. The EEC is clear from inspection and to our
knowledge this is the first analysis that draws a clear connection between the
Matérn covariance estimator and a cubic spline as a limiting case.
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3.2.2. Two dimensional thin plate spline. Naturally, the second special case
should be d = 2 and v = 1 and this is aligned with early results by Stein (1991).
Again we attempt to calculate the inverse transform in two dimensions. By
switching to polar coordinates we find that the inverse transform of (1+ Ac(a? +
w2)2)_1, where w refers to the radial component in the frequency space, depends
on the radial component in the state space only. Then, the inverse transform is

_ 2mc [ Jo(rw)w
Gl = T/O /At (2t w2

where Jy is the Bessel function of first kind of order 0. Unfortunately, we are

given by

unable to further simplify this expression and it will be necessary to prove the
EEC using the Fourier integral or to use additional theory for Bessel functions.

In this second case, it is equally interesting to look at the thin plate spline
case. Similar to d = 1 and using the same polar coordinates substitution as for
Kriging, we obtain

2 [ Jo(rw)w 1. 1/90 o/n—
Gr)=2 [ 2222 g = — AV 2kei(A V47,
()= /0 A+t T TN ei(A™"r)
where kei is a Kelvin function (see Abramowitz and Stegun, 1965, p. 379). This
result is identical to the kernel approximation for the Kriging predictor under a

generalized covariance function model of Stein (1991).

3.8. Mean squared error for the Matérn class of covariances

For the Matérn covariance function in d = 1 with v = 1.5 we have calculated
the equivalent kernel G and from its functional form it is clear that it satisfies
the EEC for some A7, v > 0.

Let F, denote the empirical distribution function of the observation points
z;, F the uniform distribution function on D and D,, = supp |F, — F|. For
discrete sums to be properly approximated by integrals we need D, — 0 at
an appropriate rate but we do not require that the locations be drawn from a
probability distribution. In the case of near regular grids one can expect that D,
converges to zero a rate of 1/n.

THEOREM 3.1. (MSE for the one dimensional Matérn estimator). Assume
that D, — 0 as n — oo with KD,/ A7 <1 for some constant k and that k is
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the Matérn covariance function in d = 1 with v = 1.5. Without loss of generality
assume that k(0) = 1. Then we have

MSE(3(z)) ~ 1 - / G (1 — ul)k(1z — ul) du
R
for x in the interior of D and X in a range depending on D,.

The proof of this theorem is along the lines of the proof of Theorem 2.2 of
Nychka (1995). We sketch an argument why it holds below. First start with an

exact expansion of MSE(§(xz)) obtained by adding and subtracting two additional
terms.

n n

MSE(j(z)) = 1 - % S oz — mil)k(le - o) + % S Gl — wil)k (| - 24)

—%éG(Ix—xinkux—xi\) + [ 6o u)k(lz = ul)du
- [ Gl = ul)k(ie - w)au

— [ (@~ = 6 ) Jk(lz — u)aFa(w) (36)
+/RG(\x—u|)k(\x—u|)d(Fn—F)(u) (3.7)
+1—/RG(\3:—u|)k(|x—u\)du. (3.8)

The last term, (3.8) is the dominating one and is the same approximation that
was identified at (2.4). Thus a rigorous proof consistent with our conjectures
depends on bounding (3.6) and (3.7). The analysis of these individual terms
follows very closely the arguments (Nychka, 1995, p. 1191) for bounding integrals
and bounding the difference between sums and integrals. The integral (3.6) can
be shown to be negligible using the EEC and (3.7) is negligible because of the
assumptions on D,,.

The last term can be simplified by switching to Fourier transforms in the inte-
grand. Assuming that 0 is in D, we use basic properties of the Fourier transform
concerning convolutions and the value of the original function at 0 to show that

MSE(g(0)) ~ 1 —/R (

1 c
14+ (A/c)(a? + w?)?) (@ + w?)?

dw.
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By stationarity the MSE approximation is the same for all z in the interior of
D. This integral now is the basis for obtaining the asymptotic behavior of the
mean squared error as a function of the parameters a and A. As an example of
the convergence rates, hold « fixed and consider the integral just as a function
of A. Using the fact that the spectral density of the Matérn covariance function
integrates to 1, one can verify

1 c A
o /R 1+ (/o) (a? +w?)?) (o? + w2)2dw B /R 1+ (We)(a? +w?)?)

Now make the substitution © = A/4w in this integral and we obtain

/ 1
X 4/]12 (1+ (1/c)((@rl/4)2 4+ u2)?)

Noting that we made an abuse of notation where A in the equivalent kernel section
is actually o2 /n (redefined as \/n from the introductory section), we can conclude
that the pointwise MSE for this case is of order n=3/4 based on the equivalent
kernel.

du.

One of the advantages of the use of Fourier transforms is that we can evaluate
the mean squared error without actually calculating the inverse transform in order
to obtain a closed form for the reproducing kernel G. For the case d = 1 and
v = 1.5 the closed form of G only allowed us to verify the EEC for G. Assuming
that the EEC holds for arbitrary dimension and parameter v, then the mean
squared error can be evaluated using the same techniques as above and spherical
polar coordinates:

o [ dwt 12792 /T(d/2)
MSE(5(0)) ~/0 (1 + (M) (a? + w?)+d/2)

_ \2v/(2v+d) / °° w1274/ /T (d/2)
o LT (/NET0 1 2y are)

du,
i.e., the conjectured rate of convergence for the pointwise MSE is (1/n)2/(v+d),

4. DISCUSSION

We have sketched a framework to understand the asymptotic properties of
spatial statistics estimators based on a connection to existing theory for splines.
For stationary covariances the equivalent kernel approximation has a simple form
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in terms of its Fourier transform and we have obtained closed form expressions
in some key cases. We believe that the equivalent kernel will lead to the correct
convergence rates for the Kriging estimators both under the correct covariance
and also under covariance misspecification. To this end it will provide some
theoretical insight in a field that is not completely developed. However, these
forms are conjectured relations and we only offer a rigorous result for the one
dimensional case of the Matérn covariance that is related to cubic splines. Even in
this case, we have deferred including a complete proof. For future work we plan to
provide a rigorous adaptation of Nychka (1995) that is streamlined for clarity and
handles the more general estimators considered here. It is our opinion that this
work will identify the exponential envelope condition as the key assumption and
so we are comfortable emphasizing this aspect in this introduction and overview.
An important detail is to understand how to verify this condition directly with
the Fourier transform of the equivalent kernel and a possible avenue is through
an appropriate Tauberian Theorem.

One motivation for this work is to understand the behavior of the estimator
when the covariance is non-stationary. In this case the covariance is often difficult
to estimate. Indeed, it can look like another function estimation problem. It is
an open issue as to whether the benefits in using a more flexible estimate of a
non-stationary covariance function are countered by the increased variability in
using a complex estimate of the covariance. This estimated covariance may be
subject to substantial sampling error and for limited sample sizes may not be
an improvement over a more stable stationary model. As a first step in under-
standing this tradeoff, this asymptotic analysis has the potential in quantifying
the improved MSE when the correct, non-stationary covariance is used versus an
approximate stationary version. If the improvements are modest then this may
suggest that modeling the non-stationary covariance is not important for spatial
prediction. However, it may be important for inference.

Another area of work is modifying these techniques to account for distribu-
tions of locations that are not well approximated by a uniform distribution. A
possible strategy is to modify the equivalent kernel for uniform distributions with
a variable smoothing parameter that adjusts for the location density. This tech-
nique is analogous to a variable bandwidth kernel estimator and has worked for
the one dimensional spline case when the densities are smooth.

In closing we note that smoothing is just one aspect of geostatistics and there
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are many problems where the function or surface is observed almost without error.
The Kriging estimators are still very practical methods but they no longer have
the property of a smoother because they may match the observations closely and
provide smooth interpolations between observations. In this case of small mea-
surement error the asymptotics discussed here break down and locations where g
is not observed will have different MSE than estimates at the observed locations.
In short, there are still many challenges posed in understanding these penalized
estimators and advances will be useful because of the widespread use of these
methods in the geosciences.
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