• Title/Summary/Keyword: Asymptotic Normality

Search Result 140, Processing Time 0.019 seconds

ESTIMATING MOMENTS OF THE SURVIVAL TIME FROM CENSORED OBSERVATIONS

  • Jung, In-Ha;Lee, Kang-Sup
    • The Pure and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.83-89
    • /
    • 1995
  • A Bayes estimator of the survival distribution function due to Susarla and Van Ryzin(1976) is used to estimate the mth moment of a survival time on the basis of censored observations in a random censorship model. Asymptotic normality of the estimator is proved using the functional version of the delta method.

  • PDF

Test for Trend Change in NBUE-ness Using Randomly Censored Data

  • Dae-Kyung Kim;Dong-Ho Park;June-Kyun Yum
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 1995
  • Let F be a life distribution with finite mean $\mu$ Then F is said to be in new better then worse than used in expectation (NBWUE(p)) class if $\varphi(u) {\geq} u$ for $0 {\leq}u{\leq}t_0$ and ${\varphi}(u) {\leq} u$ for $t_0< u {\leq} 1$ where ${\varphi}(u)$ is the scaled total-time-on-test transform and $p=F(t_0)$. We propose a testing procedure for $H_0$ : F is exponential against $H_1$ : NBWUE(p), and is not expontial, (or $H_1\;'$ : F is NWBUE (p), and is not exponential) using randomly censored data. Our procedure assumes kmowledge of the proportion p of the population that fail at or before the change-point $\t_0$. Know ledge of $\t_0$ itself is not assumed. The asymptotic normality of the test statistic is established and a Monte Carlo experiment is performed to investigate the speed of convergence of the test statistic to normality. The power of our test is also studied.

  • PDF

Negative Exponential Disparity Based Deviance and Goodness-of-fit Tests for Continuous Models: Distributions, Efficiency and Robustness

  • Jeong, Dong-Bin;Sahadeb Sarkar
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.41-61
    • /
    • 2001
  • The minimum negative exponential disparity estimator(MNEDE), introduced by Lindsay(1994), is an excellenet competitor to the minimum Hellinger distance estimator(Beran 1977) as a robust and yet efficient alternative to the maximum likelihood estimator in parametric models. In this paper we define the negative exponential deviance test(NEDT) as an analog of the likelihood ratio test(LRT), and show that the NEDT is asymptotically equivalent to he LRT at the model and under a sequence of contiguous alternatives. We establish that the asymptotic strong breakdown point for a class of minimum disparity estimators, containing the MNEDE, is at least 1/2 in continuous models. This result leads us to anticipate robustness of the NEDT under data contamination, and we demonstrate it empirically. In fact, in the simulation settings considered here the empirical level of the NEDT show more stability than the Hellinger deviance test(Simpson 1989). The NEDT is illustrated through an example data set. We also define a goodness-of-fit statistic to assess adequacy of a specified parametric model, and establish its asymptotic normality under the null hypothesis.

  • PDF

Canonical Correlation: Permutation Tests and Regression

  • Yoo, Jae-Keun;Kim, Hee-Youn;Um, Hye-Yeon
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.471-478
    • /
    • 2012
  • In this paper, we present a permutation test to select the number of pairs of canonical variates in canonical correlation analysis. The existing chi-squared test is known to be limited to normality in use. We compare the existing test with the proposed permutation test and study their asymptotic behaviors through numerical studies. In addition, we connect canonical correlation analysis to regression and we we show that certain inferences in regression can be done through canonical correlation analysis. A regression analysis of real data through canonical correlation analysis is illustrated.

BERRY-ESSEEN BOUNDS OF RECURSIVE KERNEL ESTIMATOR OF DENSITY UNDER STRONG MIXING ASSUMPTIONS

  • Liu, Yu-Xiao;Niu, Si-Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.343-358
    • /
    • 2017
  • Let {$X_i$} be a sequence of stationary ${\alpha}-mixing$ random variables with probability density function f(x). The recursive kernel estimators of f(x) are defined by $$\hat{f}_n(x)={\frac{1}{n\sqrt{b_n}}{\sum_{j=1}^{n}}b_j{^{-\frac{1}{2}}K(\frac{x-X_j}{b_j})\;and\;{\tilde{f}}_n(x)={\frac{1}{n}}{\sum_{j=1}^{n}}{\frac{1}{b_j}}K(\frac{x-X_j}{b_j})$$, where 0 < $b_n{\rightarrow}0$ is bandwith and K is some kernel function. Under appropriate conditions, we establish the Berry-Esseen bounds for these estimators of f(x), which show the convergence rates of asymptotic normality of the estimators.

A High Breakdown and Efficient GM-Estimator in Linear Models

  • Song, Moon-Sup;Park, Changsoon;Nam, Ho-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.471-487
    • /
    • 1996
  • In this paper we propose an efficient scoring type one-step GM-estimator, which has a bounded influence function and a high break-down point. The main point of the estimator is in the weighting scheme of the GM-estimator. The weight function we used depends on both leverage points and residuals So we construct an estimator which does not downweight good leverage points Unider some regularity conditions, we compute the finite-sample breakdown point and prove asymptotic normality Some simulation results are also presented.

  • PDF

Nonparametric test for ordered alternatives in multifactor designeds (다요인실험계획에서 순서대립가설에 대한 비모수검정법의 연구)

  • 김동희;임동훈
    • The Korean Journal of Applied Statistics
    • /
    • v.3 no.1
    • /
    • pp.11-25
    • /
    • 1990
  • The objective of this paper is to propose a nonparametric distribution-free test for ordered alternatives in k crossed factor designs by using the concepts of combined factor and within-blocks ranks. We investigate the asymptotic normality of the proposed test statistic and the Pitman efficiencies. We also compared the small empirical powers of the tests considered in this paper by Monte Carlo study. Thus we can conclude that the proposed test is efficient and robust for the underlying distribution.

  • PDF

Jackknifed Cochran-Mantel-Haenszel Test for Conditional Independence in Sparse $2\tims2\tims$K Tables

  • Jeong, Kwang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.51-63
    • /
    • 2001
  • We are interested in the conditional independence in sparse $2\tims2\tims$K tables with very rare cell counts. The most popular test is Cochran-Mantel-Haenszel statistic when sample sizes are moderately large enough to guarantee the chi-square approximation. We will consider jackknifing the CMH test and also suggest an approximate normal distribution for the standardized jackknifed CMH statistic. The main focus of this paper is to improve the chi-squared approximation to the CMH test by using the asymptotic normality of the jackknifed CMH test when sample sizes are very sparse but K and N$\infty$. The performance of the proposed jackknifed test, in the sense of significance level control and power, will be compared with that of the CMH test through a Monte Carlo study.

  • PDF

Bayes and Sequential Estimation in Hilbert Space Valued Stochastic Differential Equations

  • Bishwal, J.P.N.
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.93-106
    • /
    • 1999
  • In this paper we consider estimation of a real valued parameter in the drift coefficient of a Hilbert space valued Ito stochastic differential equation. First we consider observation of the corresponding diffusion in a fixed time interval [0, T] and prove the Bernstein - von Mises theorem concerning the convergence of posterior distribution of the parameter given the observation, suitably normalised and centered at the MLE, to the normal distribution as Tlongrightarrow$\infty$. As a consequence, the Bayes estimator of the drift parameter becomes asymptotically efficient and asymptotically equivalent to the MLE as Tlongrightarrow$\infty$. Next, we consider observation in a random time interval where the random time is determined by a predetermined level of precision. We show that the sequential MLE is better than the ordinary MLE in the sense that the former is unbiased, uniformly normally distributed and efficient but is latter is not so.

  • PDF