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BERRY-ESSEEN BOUNDS OF RECURSIVE

KERNEL ESTIMATOR OF DENSITY UNDER

STRONG MIXING ASSUMPTIONS
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Abstract. Let {Xi} be a sequence of stationary α-mixing random vari-
ables with probability density function f(x). The recursive kernel esti-
mators of f(x) are defined by

f̂n(x) =
1

n
√

bn

n∑

j=1

b
− 1

2

j
K
(x−Xj

bj

)
and f̃n(x) =

1

n

n∑

j=1

1

bj
K
(x−Xj

bj

)
,

where 0 < bn → 0 is bandwith and K is some kernel function. Under
appropriate conditions, we establish the Berry-Esseen bounds for these
estimators of f(x), which show the convergence rates of asymptotic nor-
mality of the estimators.

1. Introduction

A fundamental problem in statistics is estimating a probability density func-
tion. There have been many papers concerning the non-parametric density
estimation. See the books by Silverman [17] and Scott [16] and the references
therein for available methods and results.

In this paper, we focus on the density estimation of dependent sample. In
particular, let {Xj} be a sequence of random variables with the probability
density function f(x). Rosenblatt [13] and Parzen [10] introduced the following
classical kernel estimator of f(x):

fn(x) =
1

nbn

n
∑

j=1

K
(x−Xj

bn

)

,

where 0 < bn → 0 is bandwith and K is some kernel function. The estimator
fn(x) has been discussed extensively under dependent case, such as Roussas
[14], Tran [18] and Liebscher [6] studied strong convergence of fn(x), the as-
ymptotic normality of fn(x) are derived by Robinson [12], Roussas [15] and
Liebscher [7].
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In addition, f(x) has the following two other recursive kernel estimators in
literature:

̂fn(x) =
1

n
√
bn

n
∑

j=1

b
− 1

2

j K
(x−Xj

bj

)

, ˜fn(x) =
1

n

n
∑

j=1

1

bj
K
(x−Xj

bj

)

.

The estimator ̂fn(x) was first introduced by Wegman and Davies [20] in the

independent case, and ̂fn(x) and ˜fn(x) had been thoroughly examined in Weg-
man and Davies [20]. It is easy to see

̂fn(x) =
n− 1

n

(

bn−1

bn

)1/2

f̂n−1(x) +
1

nbn
K

(

x−Xn

bn

)

,

˜fn(x) =
n− 1

n
˜fn−1(x) +

1

nbn
K

(

x−Xn

bn

)

.

These recursive properties are particularly useful in large sample sizes since
̂fn(x) and ˜fn(x) can be easily updated with each additional observation, re-
spectively. This is especially relevant in a time series context, where there has
been an interest in the use of nonparametric estimates in very long financial
time series. Also, under certain circumstances, the recursive estimators are
more efficient than its nonrecursive counterpart fn(x) when efficiency is mea-
sured in terms of the variance of an appropriate asymptotic (normal) distribu-

tion. Therefore, the properties of ̂fn(x) and ˜fn(x) are extensively discussed by
some authors, for example, the quadratic mean convergence and asymptotic
normality of these recursive estimators have been obtained by Masry [8] under
various assumptions on the dependence of Xi; Strong pointwise consistency of
̂fn(x) has been proved by Györfi [2]; Masry [9] established sharp rates of almost

sure convergence of ̂fn(x) to f(x) for vector-valued stationary strong mixing
processes under weak assumptions on the strong mixing condition, these rates
were improved by Tran [18]; Tran [19] studied the uniform convergence and

asymptotic normality of ̂fn(x) under some dependent assumption defined in
terms of joint densities.

It is well known that the accuracy of the confidence intervals depends on
how fast the theoretical distributions of the estimators converge to their limits.
As a result, Berry-Esseen type bounds can be used to assess the accuracy. Up
to now, the Berry-Esseen bounds for the estimators of f(x) have only a few
results, for example, Yang and Hu [21] investigated the Berry-Esseen bounds of
fn(x) with φ-mixing dependent sample; Liang and Baek [4] studied the Berry-

Esseen bounds for density estimates fn(x), ̂fn(x) and ˜fn(x) under negatively
associated assumptions. As far as we know, the Berry-Esseen type bounds for

the estimators of ̂fn(x) and ˜fn(x) under α-mixing assumptions are not available
in the literature. We discuss this topic in this paper.
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Recall that a sequence {ζk, k ≥ 1} is said to be α-mixing if the α-mixing
coefficient

α(n)
def
:= sup

k≥1
sup{|P (AB)− P (A)P (B)| : A ∈ F∞

n+k, B ∈ Fk
1 }

converges to zero as n → ∞, where Fm
l = σ{ζl, ζl+1, . . . , ζm} denotes the

σ-algebra generated by ζl, ζl+1, . . . , ζm with l ≤ m. Among various mixing
conditions used in the literature, the α-mixing is reasonably weak and is known
to be fulfilled for many stochastic processes including many time series models.
In fact, under very mild assumptions linear autoregressive and more generally
bilinear time series models are strongly mixing with mixing coefficients decaying
exponentially, i.e., α(k) = O(ρk) for some 0 < ρ < 1. See Doukhan [1, page
99], for more details.

The paper is organized as follows. In next section, we list some assumption
conditions and give main results. Some lemmas and proofs of the main results
are provided in Section 3, and the proofs of the lemmas are put in Appendix
(i.e., Section 4).

2. Main results

In the sequel, let C, c0 and c denote generic finite positive constants, whose
values are may change from line to line, and let Φ(·) denote the standard normal
distribution function. c(f) stands for set of continuous points of function f(·)
and U(x) for a neighborhood of x. An = O(Bn) means |An| ≤ C|Bn|.

In order to formulate the main results, we need the following assumptions.

(B1) The density function f(u) satisfies that (i) supu∈U(x) |f
′(x)| < ∞; (ii)

the second-order derivative f ′′(u) of f(u) exists and is bounded for
u ∈ U(x).

(B2) For all integers k ≥ 1, let f(x, y, k) be joint density of (X1, X1+k) and
supx,y |f(x, y, k)− f(x)f(y)| ≤ c0 for k ≥ 1.

(B3) The kernel K(·) is a bounded function with bounded support, and
satisfies that

∫

R
K(t)dt = 1 and

∫

R
tK(t)dt = 0.

(B4) The bandwiths bn satisfy that (i) bn is monotonous non-increasing; (ii)
n−1

∑n

j=1 b
−1
n bj = O(1); (iii) n−1

∑n

j=1 b
−1
j bn → θ1, where 0 < θ1 <

∞.
(B5) Let p := pn < n and q := qn < n be positive integers tending to ∞.

Put k := kn = [ n
p+q

] and assume that (i) pnkn/n → 1; (ii) pnbn → 0,

pnb
1/2
n → ∞; (iii) b

−1/3
n u(q) → 0, kb

1/2
n α2/3(q) → 0, where u(q) =

∑∞

j=q α
1/3(j).

Remark 2.1. (B5)(i) implies that pnkn/n = O(1) and qnkn/n→ 0. Hence, we
have qn/pn → 0, so that qn < pn, eventually.
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Put σ2
1n = Var(

√
nbn ̂fn(x)), σ

2
2n = Var(

√
nbn ˜fn(x)), σ

2
1 = f(x)

∫

R
K2(u)du,

σ2
2 = θ1f(x)

∫

R
K2(u)du,

S1n =

√
nbn[ ̂fn(x)− E ̂fn(x)]

σ1n
, S2n =

√
nbn[ ˜fn(x)− E ˜fn(x)]

σ2n
,

Fln(u) = P (Sln ≤ u) (l = 1, 2), γ1n = kq

n
+ b

−1/3
n u(p) and γ2n = p

nb
3/2
n

.

Theorem 2.1. Let {Xi} be a sequence of stationary α-mixing random variables

with α(n) = O(n−τ ) for some τ > 6 and f(x) > 0 for x ∈ c(f). Assume that

(B2), (B3), (B4)(i)(ii) and (B5) are satisfied, then

sup
u

|F1n(u)− Φ(u)|

≤ C
{

γ
1/3
1n + γ

1/2
2n + (p/n)1/3 + (pbn)

1/3 + kb1/2n α2/3(q) + b−1/3
n u(q)

}

.

Corollary 2.1. Set S∗
1n = σ−1

1

√
nbn{ ̂fn(x)−E ̂fn(x)}. Under the assumptions

of Theorem 2.1, if (B1)(i) holds, then

sup
u

|P (S∗
1n ≤ u)− Φ(u)|

≤ C
{

γ
1/3
1n + γ

1/2
2n + (p/n)1/3 + (pbn)

1/3 + kb1/2n α2/3(q) + b−1/3
n u(q)

}

.

Theorem 2.2. Let {Xi} be a sequence of stationary α-mixing random variables

with α(n) = O(n−τ ) for some τ > 6 and f(x) > 0 for x ∈ c(f). Assume that

(B2), (B3), (B4)(i)(iii) and (B5) hold, then

sup
u

|F2n(u)− Φ(u)| = O
(

γ
1/3
1n + γ

1/2
2n + (p/n)1/3 + kb1/2n α2/3(q) + b−1/3

n u(q)
)

.

Corollary 2.2. Set S∗
2n = σ−1

2n

√
nbn{ ˜fn(x)−f(x)}. Let (B1)(ii) hold, and that

∑n

j=1(bj/bn)
2 = O(1)

√

nb5n = o(1). Then, under the assumptions of Theorem

2.2 we have

sup
u

|P (S∗
2n ≤ u)− Φ(u)|

= O
(

γ
1/3
1n + γ

1/2
2n + (p/n)1/3 + kb1/2n α2/3(q) + b−1/3

n u(q) +
√

nb5n

)

.

3. Proofs of main results

Let K̄(·) = K(·) − EK(·), ζ
(1)
nj = 1

σ1n

√
nbj

K̄(
x−Xj

bj
) := σ−1

1n ξ
(1)
nj , ζ

(2)
nj =

√

bn
n

1
σ2nbj

K̄(
x−Xj

bj
) := σ−1

2n ξ
(2)
nj . Then Svn =

∑n

j=1 ζ
(v)
nj = σ−1

vn

∑n

j=1 ξ
(v)
nj for

v = 1, 2.
Under (B5), for m = 1, 2, . . . , k, split the set {1, 2, . . . , n} into k(large) p-

blocks, Im, and k(small) q-blocks, Jm, as follows:

Im = {i : i = lm, . . . , lm + p− 1}, Jm = {j : j = l′m + 1, . . . , l′m + q},
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where lm = (m− 1)(p+ q) + 1, l′m = (m− 1)(p+ q) + p, the remaining points
form the set {l : k(p+ q) + 1 ≤ l ≤ n} (which may be ∅). Let

gvnm =
∑

i∈Im

ξ
(v)
nj , g

′
vnm =

∑

j∈Jm

ξ
(v)
nj , g

′′
vnk =

n
∑

h=k(p+q)+1

ξ
(v)
nh ,

S′
vn = σ−1

vn

k
∑

m=1

gvnm, S
′′
vn = σ−1

vn

k
∑

m=1

g′vnm, S
′′′
vn = σ−1

vn g
′′
vnk.

Then Svn = S′
vn + S′′

vn + S′′′
vn for v = 1, 2. Set s2vn = σ−2

vn

∑k

m=1 Var(gvnm).
For v = 1, 2, let ηvnm,m = 1, 2, . . . , k be independent random variables and

the distribution of ηvnm is the same as that of zvnm = σ−1
vn gvnm for m =

1, 2, . . . , k. Put

Hvn =

k
∑

m=1

ηvnm, Bvn =

k
∑

m=1

Var(ηvnm), ˜Fvn(u) = P (S′
vn ≤ u)

and Gvn = P
(

Hvn√
Bvn

≤ u
)

. Then Bvn = s2vn and ˜Gvn(u) := P (Hvn ≤ u) =

Gvn

(

u
svn

)

.

In order to prove the main results, we give the following some lemmas, whose
proofs are put in Appendix (i.e., Section 4).

Lemma 3.1.

(a) Under the assumptions of Theorem 2.1 we have σ2
1n → σ2

1. Further,

if (B1)(i) holds, then |σ2
1n − σ2

1 | = O
(

γ
1/2
1n + (p/n)1/2 + (pbn)

1/2 +

b
−1/3
n u(q)

)

.

(b) Under the assumptions of Theorem 2.2 we have σ2
2n → σ2

2.

Lemma 3.2.

(a) Under the assumptions of Theorem 2.1 we have E(S′′
1n)

2 = O(γ1n +

qbn), E(S′′′
1n)

2 = O(p/n + pbn) and |s21n − 1| = O
(

γ
1/2
1n + (p/n)1/2 +

(pbn)
1/2 + b

−1/3
n u(q)

)

.

(b) Under the assumptions of Theorem 2.2 we have E(S′′
2n)

2 = O
(

γ1n
)

,

E(S′′′
2n)

2 = O
(

p

n

)

and |s22n − 1| ≤ C{γ
1/2
1n + (p/n)1/2 + b

−1/3
n u(q)}.

Lemma 3.3.

(a) Under the assumptions of Theorem 2.1, we have supu |G1n(u)−Φ(u)| ≤

Cγ
1/2
2n .

(b) Under the assumptions of Theorem 2.2, we have supu |G2n(u)−Φ(u)| ≤

Cγ
1/2
2n .

Lemma 3.4.

(a) Under the assumptions of Theorem 2.1, we have supu | ˜F1n(u)− ˜G1n(u)|

≤ C{kb
1/2
n α2/3(q) + γ

1/2
2n }.
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(b) Under the assumptions of Theorem 2.2, we have supu | ˜F2n(u)− ˜G2n(u)|

≤ C{kb
1/2
n α2/3(q) + γ

1/2
2n }.

Lemma 3.5. Suppose that (B1)(ii) and (B3) hold. If n−1
∑n

j=1(
bj
bn
)2 = O(1),

then E ˜fn(x) = f(x) +O(b2n).

Lemma 3.6 ([5, Lemma 3.1]). Let X and Y1, . . . , Ym be random variables.

Then for positive numbers w1, . . . , wm we have

sup
u

∣

∣

∣
P
(

X +

m
∑

i=1

Yi ≤ u
)

− Φ(u)
∣

∣

∣

≤ sup
u

|P (X ≤ u)− Φ(u)|+

m
∑

i=1

wi
√
2π

+

m
∑

i=1

P (|Yi| > wi).

Proof of Theorem 2.1. Using Lemma 3.6 we have

sup
u

|F1n(u)− Φ(u)|

= sup
u

|P (S′
1n + S′

1n + S′′′
1n ≤ u)− Φ(u)|

≤ sup
u

|P (S′
1n ≤ u)− Φ(u)|+

(γ1n + qbn)
1/3 + (p/n+ pbn)

1/3

√
2π

+ P (|S′′
1n| ≥ (γ1n + qbn)

1/3) + P (|S′′′
1n| ≥ (p/n+ pbn)

1/3).

It is easy to see that

sup
u

|P (S′
1n ≤ u)− Φ(u)| ≤ sup

u

| ˜F1n(u)− ˜G1n(u)|+ sup
u

∣

∣

∣

˜G1n(u)− Φ
( u
√
B1n

)
∣

∣

∣

+ sup
u

∣

∣

∣
Φ
( u
√
B1n

)

− Φ(u)
∣

∣

∣
.

Lemma 3.4 gives supu | ˜F1n(u) − ˜G1n(u)| ≤ C{kb
1/2
n α2/3(q) + γ

1/2
2n }. Applying

Lemma 3.3(a) it follows that supu
∣

∣ ˜G1n(u)−Φ
(

u√
B1n

)
∣

∣ = supu |G1n(u)−Φ(u)| ≤

Cγ
1/2
2n . Note that

sup
u

∣

∣

∣
Φ
( u
√
B1n

)

− Φ(u)
∣

∣

∣
≤ C|B1n − 1| = C|s21n − 1|

≤ C
{

γ
1/2
1n + (p/n)1/2 + (pbn)

1/2 + b−1/3
n u(q)

}

.

Then

sup
u

|P (S′
1n ≤ u)− Φ(u)|

≤ C
{

γ
1/2
1n + γ

1/2
2n + (p/n)1/2 + (pbn)

1/2 + kb1/2n α2/3(q) + b−1/3
n u(q)

}

.

From Lemma 3.2 we have

P (|S′′
1n| ≥ (γ1n + qbn)

1/3) ≤
1

(γ1n + qbn)2/3
E|S′′

1n|
2 ≤ C{γ

1/3
1n + (qbn)

1/3}
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and P (|S′′′
1n| ≥ (p/n+ pbn)

1/3) ≤ C{(p/n)1/3 + (pbn)
1/3}. Then

sup
u

|F1n(u)− Φ(u)|

≤ C
{

γ
1/3
1n + γ

1/2
2n + (p/n)1/3 + (pbn)

1/3 + kb1/2n α2/3(q) + b−1/3
n u(q)

}

.
�

Proof of Corollary 2.1. Note that

sup
u

|P (S∗
1n ≤ u)− Φ(u)|

= sup
u

∣

∣

∣
P
(

S1n ≤
σ1

σ1n
u
)

− Φ(u)
∣

∣

∣

≤ sup
u

∣

∣

∣
P
(

S1n ≤
σ1

σ1n
u
)

− Φ
( σ1

σ1n
u
)∣

∣

∣
+ sup

u

∣

∣

∣
Φ
( σ1

σ1n
u
)

− Φ(u)
∣

∣

∣

= sup
u

|F1n(u)− Φ(u)|+ sup
u

∣

∣

∣
Φ
( σ1

σ1n
u
)

− Φ(u)
∣

∣

∣
.

Using Lemma 3.1 it follows that supu
∣

∣Φ
(

σ1

σ1n
u
)

− Φ(u)
∣

∣ ≤ C|σ2
1n − σ2

1 | ≤

C
(

γ
1/2
1n + (p/n)1/2 + (pbn)

1/2 + b
−1/3
n u(q)

)

, which, together with Theorem 2.1,
yields that

sup
u

|P (S∗
1n ≤ u)− Φ(u)|

≤ C
{

γ
1/3
1n + γ

1/2
2n + (p/n)1/3 + (pbn)

1/3 + kb1/2n α2/3(q) + b−1/3
n u(q)

}

. �

Proof of Theorem 2.2. Applying (b) in Lemmas 3.2-3.4, following the argu-
ments as for the proof of Theorem 2.1, one can verify Theorem 2.2. �

Proof of Corollary 2.2. Note that Lemma 3.1(b) shows that σ2
2n ≥ c0 > 0 for

large n. Then using Lemmas 3.5 and 3.6, it follows that

sup
u

(P (S∗
2n ≤ u)− Φ(u))

= sup
u

∣

∣

∣
P
(

S2n +

√
nbn

(

E ˜fn(x)
)

− f(x)

σ2n
≤ u

)

− Φ(u)
∣

∣

∣

≤ sup
u

|P (S2n ≤ u)− Φ(u)|+ C

√
nbn|E ˜fn(x) − f(x)|

σ2n

≤ sup
u

|P (S2n ≤ u)− Φ(u)|+ C
√

nb5n.

Then the conclusion is proved by using Theorem 2.2. �

4. Appendix

Lemma 4.1 (Toeplitz lemma, [3, page 31]). Let ani, 1 ≤ i ≤ kn, n ≥ 1, and
xi, i ≥ 1, be real numbers such that for every fixed i, ani → 0 and for all n,
∑

i ani ≤ C < ∞. If xn → 0, then
∑

i anixi → 0, and if
∑

i ani → 1, then
xn → x ensures that

∑

i anixi → x.
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Lemma 4.2 ([3, Corollary A.2, p. 278]). Suppose that X and Y are random

variables such that E|X |p < ∞, E|Y |q < ∞, where p, q > 1, p−1 + q−1 <

1. Then |EXY − EXEY | ≤ 8‖X‖p‖Y ‖q
{

supA∈σ(X),B∈σ(Y ) |P (A ∩ B) −

P (A)P (B)|
}1−p−1

−q−1

.

Lemma 4.3 ([22, Theorem 2.2]). Let r > 2, δ > 0. Suppose that {Zi, i ≥ 1} is

a stationary α-mixing sequence of random variables with the mixing coefficients

{α(n)} with EZn = 0 and α(n) = O(n−λ) for λ > r(r+ δ)/(2δ). If E|Zi|
r+δ <

∞, then, for any ε > 0, there exists a positive constant C = C(ε, r, δ, λ) such

that Emax1≤m≤n

∣

∣

∑m

i=1 Zi

∣

∣

r
≤ C

{

nε
∑n

i=1E|Zi|
r +

(
∑n

i=1 ‖Zi‖
2
r+δ

)r/2}
.

Lemma 4.4 ([23]). Let p and q be positive integers. Suppose that {Zi, i ≥ 1} is

a stationary α-mixing sequence of random variables with the mixing coefficients

{α(n)}. Set ηr =
∑(r−1)(p+q)+p

j=(r−1)(p+q)+1 Zj for 1 ≤ r ≤ w. If s > 0, r > 0 with

1/s+1/r = 1, then there exists constant C > 0 such that |E exp(it
∑w

r=1 ηr)−
∏w

r=1E exp(itηr)| ≤ C|t|α1/s(q)
∑w

r=1 ‖ηr‖r.

Proof of Lemma 3.1. We prove only (a), the proof of (b) is similar. Write

σ2
1n = Var

(

k
∑

m=1

g1nm +

k
∑

m=1

g′1nm + g′′1nk

)

= Var
(

k
∑

m=1

g1nm

)

+Var
(

k
∑

m=1

g′1nm

)

+Var
(

g′′1nk

)

+Cov
(

k
∑

m=1

g1nm,

k
∑

m=1

g′1nm

)

+Cov
(

k
∑

m=1

g′1nm, g
′′
1nk

)

+Cov
(

g′′1nk,

k
∑

m=1

g1nm

)

.

Step 1. We prove σ2
1n → σ2

1 .

First, we evaluate Var(
∑k

m=1 g1nm), Var(
∑k

m=1 g
′
1nm) and Var(g′′1nk). Note

that

Var
(

k
∑

m=1

g1nm

)

=

k
∑

m=1

lm+p−1
∑

i=lm

Var(ξ
(1)
ni ) + 2

k
∑

m=1

∑

lm≤i<j≤lm+p−1

Cov(ξ
(1)
ni , ξ

(1)
nj )

+ 2
∑

1≤i<j≤k

Cov(g1ni, g1nj),

Var
(

k
∑

m=1

g′1nm

)

=
k

∑

m=1

l′m+q
∑

i=l′m+1

Var(ξ
(1)
ni ) + 2

k
∑

m=1

∑

l′m+1≤i<j≤l′m+q

Cov(ξ
(1)
ni , ξ

(1)
nj )

+ 2
∑

1≤i<j≤k

Cov(g′1ni, g
′
1nj),
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Var(g′′′1nk) =

n
∑

i=k(p+q)+1

Var(ξ
(1)
ni ) + 2

∑

k(p+q)+1≤i<j≤n

Cov(ξ
(1)
ni , ξ

(1)
nj ).

Since x ∈ c(f), using (B3) it follows that

b−1
i Var

(

K
(x−Xi

bi

))

=

∫

R

K2(u)f(x− biu)du− bi

(

∫

R

K(u)f(x− biu)
)

du
)2

→ f(x)

∫

R

K2(u)du = σ2
1 as i→ ∞,

which implies that b−1
i Var(K(x−Xi

bi
) ≤ C for i ≥ 1, and using Lemma 4.1 we

have
n
∑

i=1

Var(ξ
(1)
ni ) =

1

n

n
∑

i=1

b−1
i Var

(

K
(x−Xi

bi

))

→ σ2
1 .

Then from (B5) or Remark 2.1 we get

k
∑

m=1

l′m+q
∑

i=l′m+1

Var(ξ
(1)
ni ) ≤ C

kq

n
→ 0,

n
∑

i=k(p+q)+1

Var(ξ
(1)
ni ) ≤ C

p

n
→ 0,

k
∑

m=1

lm+p−1
∑

i=lm

Var(ξ
(1)
ni ) +

k
∑

m=1

i=l′m+q
∑

l′m+1

Var(ξ
(1)
ni ) +

n
∑

i=k(p+q)+1

Var(ξ
(1)
ni ) → σ2

1 .

In view of (B2), (B3) and (B4)(i), for i < j we have

|Cov(ξ
(1)
ni , ξ

(1)
nj )|

=
1

n
√

bibj

∣

∣

∣
Cov

(

K
(x−Xi

bi

)

,K
(x−Xj

bj

))
∣

∣

∣

=

√

bibj

n

∣

∣

∣

∫

R

∫

R

K(s)K(t){f(x− sbi, x− tbj , j− i)−f(x− sbi)f(x− tbj)}dsdt
∣

∣

∣

≤ C
bi

n
.

Therefore, from (B4)(ii) we have

∣

∣

∣

k
∑

m=1

∑

lm≤i<j≤lm+p−1

Cov(ξ
(1)
ni , ξ

(1)
nj )

∣

∣

∣
≤ C

p

n

n
∑

i=1

bi = O(pbn) → 0,

∣

∣

∣

k
∑

m=1

∑

l′m+1≤i<j≤l′m+q

Cov(ξ
(1)
ni , ξ

(1)
nj )

∣

∣

∣
≤ C

q

n

n
∑

i=1

bi = O(qbn) → 0,

∣

∣

∣

∑

k(p+q)+1≤i<j≤n

Cov(ξ
(1)
ni , ξ

(1)
nj )

∣

∣

∣
≤ C

p

n

n
∑

i=1

bi = O(pbn) → 0.
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Applying Lemma 4.2 we have

∣

∣

∣

∑

1≤i<j≤k

Cov(g1ni, g1nj)
∣

∣

∣

(4.1)

≤
∑

1≤i<j≤k

∑

s∈Ii

∑

t∈Ij

C

n
√
bsbt

∣

∣

∣
Cov

(

K
(

x−Xs

bs

)

,K
(

x−Xt

bt

))∣

∣

∣

≤

k−1
∑

i=1

k
∑

j=i+1

li+p−1
∑

s=li

lj+p−1
∑

t=lj

α1/3(t− s)
1

n
√
bsbt

[

E
∣

∣

∣
K
(

x−Xs

bs

)∣

∣

∣

3

E
∣

∣

∣
K
(

x−Xt

bt

)∣

∣

∣

3]1/3

≤ C
1

nb
1/3
n

k−1
∑

i=1

k
∑

j=i+1

li+p−1
∑

s=li

lj+p−1
∑

t=lj

α1/3(t− s) ≤ Cb−1/3
n u(q) → 0.

Similarly |
∑

1≤i<j≤k Cov(g
′
1ni, g

′
1nj)| ≤ Cb

−1/3
n u(p) → 0.

Therefore Var(
∑k

m=1 g1nm) → σ2
1 , Var(

∑k

m=1 g
′
1nm) = O(kq

n
+qbn+b

−1/3
n u(p))

→ 0, Var(g′′1nk) = O( p
n
+ pbn) → 0. Further, applying the Cauchy-Schwarz

inequality, one obtains that

∣

∣

∣
Cov

(

k
∑

m=1

g1nm,

k
∑

m=1

g′1nm

)
∣

∣

∣
≤

√

√

√

√Var
(

k
∑

m=1

g1nm

)

Var
(

k
∑

m=1

g′1nm

)

→ 0,

∣

∣

∣
Cov

(

k
∑

m=1

g′1nm, g
′′
1nk

)∣

∣

∣
≤

√

√

√

√Var
(

k
∑

m=1

g′1nm

)

Var(g′′1nk) → 0,

∣

∣

∣
Cov

(

g′′1nk,

k
∑

m=1

g1nm

)∣

∣

∣
≤

√

√

√

√Var
(

k
∑

m=1

g1nm

)

Var(g′′1nk) → 0.

Therefore σ2
1n → σ2

1 .

Step 2. We verify |σ2
1n − σ2

1 | = O
(

γ
1/2
1n + (p/n)1/2 + (pbn)

1/2 + b
−1/3
n u(q)

)

.
Note that

|σ2
1n − σ2

1 | ≤
∣

∣

∣

n
∑

i=1

Var(ξ
(1)
ni )− σ2

1

∣

∣

∣
+
∣

∣

∣

∑

1≤i<j≤k

Cov(g1ni, g1nj)
∣

∣

∣

+
∣

∣

∣

∑

1≤i<j≤k

Cov(g′1ni, g
′
1nj)

∣

∣

∣
+
∣

∣

∣

∑

k(p+q)+1≤i<j≤n

Cov(ξ
(1)
ni , ξ

(1)
nj )

∣

∣

∣

+
∣

∣

∣

k
∑

m=1

∑

lm≤i<j≤lm+p−1

Cov(ξ
(1)
ni , ξ

(1)
nj )

∣

∣

∣
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+
∣

∣

∣

k
∑

m=1

∑

l′m+1≤i<j≤l′m+q

Cov(ξ
(1)
ni , ξ

(1)
nj )

∣

∣

∣

+
∣

∣

∣
Cov

(

k
∑

m=1

g1nm,

k
∑

m=1

g′1nm

)∣

∣

∣
+
∣

∣

∣
Cov

(

k
∑

m=1

g′1nm, g
′′
1nk

)∣

∣

∣

+
∣

∣

∣
Cov

(

g′′1nk,

k
∑

m=1

g1nm

)∣

∣

∣
:=

∣

∣

∣

n
∑

i=1

Var(ξ
(1)
ni )− σ2

1

∣

∣

∣
+H5.

According to (B)(i), (B3) and (B4)(ii) we have

∣

∣

∣

n
∑

i=1

Var(ξ
(1)
ni )− σ2

1

∣

∣

∣
≤

∣

∣

∣

1

n

n
∑

i=1

∫

R

K2(u)[f(x− biu)− f(x)]du
∣

∣

∣

+
1

n

n
∑

i=1

bi

(

∫

R

K(u)f(x− biu)du
)2

≤
1

n

n
∑

i=1

bi = O(bn).

From the proof in Step 1 we have

H5 = O
(

b−1/3
n u(q) + b−1/3

n u(p) + pbn + qbn +
[kq

n
+ qbn + b−1/3

n u(p)
]1/2

+
[ p

n
+ pbn

]1/2)

= O
(

γ
1/2
1n + (p/n)1/2 + (pbn)

1/2 + b−1/3
n u(q)

)

.

Therefore |σ2
1n − σ2

1 | = O
(

γ
1/2
1n + (p/n)1/2 + (pbn)

1/2 + b
−1/3
n u(q)

)

. �

Proof of Lemma 3.2. (a) Lemma 3.1(a) shows that σ2
1n ≥ c0 > 0 for large n,

and from the proof of (a) in Lemma 3.1, we have

Var
(

k
∑

m=1

g′1nm

)

= O
(kq

n
+ qbn + b−1/3

n u(p)
)

= O(γ1n + qbn),

Var(g′′1nk) = O
( p

n
+ pbn

)

.

Therefore

E(S′′
1n)

2 = σ−2
1n Var

(

k
∑

m=1

g′1nm
)

= O(γ1n + qbn),

E(S′′′
1n)

2 = σ−2
1n Var(g′′1nk)

)

= O(p/n+ pbn).
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From definition of s21n we have

s21n = E(S′
1n)

2 − 2Γ1n with Γ1n = σ−2
1n

∑

1≤i≤j≤k

Cov
(

g1ni, g1nj
)

.

(4.1) gives |Γ1n| = O(b
−1/3
n u(q)). Note that ES2

1n = 1 and

E(S′
1n)

2 = E{S1n − (S′′
1n + S′′′

1n)}
2

= 1 + E(S′′
1n + S′′′

1n)
2 − 2E{S1n(S

′′
1n + S′′′

1n)}.

Hence

|E(S′
1n)

2 − 1|

= |E(S′′
1n + S′′′

1n)
2 − 2E[S1n(S

′′
1n + S′′′

1n)]|

≤ C{E(S′′
1n)

2+E(S′′′
1n)

2+(ES2
1n)

1/2(E(S′′
1n)

2)1/2+(ES2
1n)

1/2(E(S′′′
1n)

2)1/2}

≤ C{γ
1/2
1n + (p/n)1/2 + (pbn)

1/2}.

Therefore |s21n − 1| = O
(

γ
1/2
1n + (p/n)1/2 + (pbn)

1/2 + b
−1/3
n u(q)

)

.

(b) Note that Lemma 3.1(b) shows that σ2
2n ≥ c0 > 0 for large n. Then

E(S′′
2n)

2 ≤ CVar
(

k
∑

m=1

g′2nm

)

, E(S′′′
2n)

2 ≤ CVar(g′′2nk).

Similarly to the arguments as in Step 1 of the proof in Lemma 3.1, we have

Var
(

k
∑

m=1

g′2nm

)

=

k
∑

m=1

l′m+q
∑

i=l′m+1

Var(ξ
(2)
ni ) + 2

k
∑

m=1

∑

l′m+1≤i<j≤l′m+q

Cov(ξ
(2)
ni , ξ

(2)
nj )

+ 2
∑

1≤i<j≤k

Cov(g′2ni, g
′
2nj),

Var(g′′2nk) =

n
∑

i=k(p+q)+1

Var(ξ
(2)
ni ) + 2

∑

k(p+q)+1≤i<j≤n

Cov(ξ
(2)
ni , ξ

(2)
nj ).

From b−1
i Var(K(x−Xi

bi
) ≤ C for i ≥ 1, using (B4)(i), it follows that

k
∑

m=1

l′m+q
∑

i=l′m+1

Var(ξ
(2)
ni ) ≤ C

k
∑

m=1

l′m+q
∑

i=l′m+1

bn

nbi
= O

(kq

n

)

,

n
∑

i=k(p+q)+1

Var(ξ
(2)
ni ) = O

( p

n

)

.

In view of (B2) and (B3) one can verify |Cov(ξ
(2)
ni , ξ

(2)
nj )| ≤ Cbn/n. Simi-

larly to the proof for (4.1) we can obtain that
∣

∣

∑

1≤i<j≤k Cov(g
′
2ni, g

′
2nj)

∣

∣ =
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O(b
−1/3
n u(p)). Therefore

Var
(

k
∑

m=1

g′2nm

)

≤ C
{kq

n
+
bnkq

2

n
+ b−1/3

n u(p)
}

= O
(kq

n
+ b−1/3

n u(p)
)

and Var(g′′2nk) = O
(

p

n
+ p2bn

n

)

= O
(

p

n

)

. Thus

E(S′′
2n)

2 = O
(kq

n
+ b−1/3

n u(p)
)

, E(S′′′
2n)

2 = O
( p

n

)

.

Similarly to the proof in (a), it follows that

|s22n − 1|

=
∣

∣

∣
E(S′

2n)
2 − 2σ−2

2n

∑

1≤i≤j≤k

Cov
(

g2ni, g2nj
)

∣

∣

∣

≤ C{E(S′′
2n)

2 + E(S′′′
2n)

2 + (ES2
2n)

1/2(E(S′′
2n)

2)1/2 + (ES2
2n)

1/2(E(S′′′
2n)

2)1/2}

+ Cb−1/3
n u(q)

≤ C{γ
1/2
1n + (p/n)1/2 + b−1/3

n u(q)}. �

Proof of Lemma 3.3. (a) Since s21n → 1 and σ2
1n → σ2

1 , by Berry-Esseen in-
equality (see [11, page 154, Theorem 5.7]), there exists some constant C > 0
such that

sup
u

|G1n(u)− Φ(u)| ≤ C

∑k

m=1E|η1nm|3

s31n
≤ C

k
∑

m=1

E|g1nm|3.

Applying Lemma 4.3, for any ǫ > 0 we have E|g1nm|3 ≤ C
{

pǫ
∑

i∈Im
E|ξ

(1)
ni |

3+
(
∑

i∈Im
‖ξ

(1)
ni ‖

2
4

)3/2}
.

From (B3) and (B4)(i), it follows that

∑

i∈Im

E|ξ
(1)
ni |

3 =
∑

i∈Im

E
∣

∣

∣

1
√

nbj

{

K
(x−Xj

bj

)

− EK
(x−Xj

bj

)}∣

∣

∣

3

= O
(

n−3/2b−1/2
n p

)

,
{

∑

i∈Im

‖ξ
(1)
ni ‖

2
4

}3/2

≤ C
{

∑

i∈Im

( 1

n2bj

∫

R

1

bj

∣

∣

∣
K
(x− u

bj

)∣

∣

∣

4

f(u)du
)1/2}3/2

= O
(( p

n
√
bn

)3/2)

.

Then, by arbitrariness of ǫ > 0 and (B5)(i) we get

sup
u

|G1n(u)− Φ(u)| ≤ C

k
∑

m=1

E|g1nm|3 ≤ C
kp

n

( p

nb
3/2
n

)1/2

≤ Cγ
1/2
2n .
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(b) Using (B3) and (B4)(i) we have

∑

i∈Im

E|ξ
(2)
ni |

3 =
∑

i∈Im

E
∣

∣

∣

√

bn

n

1

bi

(

K
(x−Xi

bi

)

− EK
(x−Xj

bj

))

|3

≤
(bn

n

)3/2 ∑

i∈Im

∫

R

∣

∣

∣

1

bi
K
(x− u

bi

)∣

∣

∣

3

f(u)du ≤
( 1

n

)3/2 p
√
bn
,

{

∑

i∈Im

‖ξ
(2)
ni ‖

2
4

}3/2

=
{

∑

i∈Im

(

E
∣

∣

∣

√

bn

n

1

bi
K̄
(x−Xi

bi

)∣

∣

∣

4)1/2}3/2

≤ C
{

∑

i∈Im

( b2n
n2b3i

∫

R

1

bi

∣

∣

∣
K
(x− u

bi

)∣

∣

∣

4

f(u)du
)1/2}3/2

≤ C
( p

nb
1/2
n

)3/2

.

Since s22n → 1 and σ2
2n → σ2

2 , similarly to the arguments as in (a) we get

supu |G2n − Φ(u)| ≤ Cγ
1/2
2n . �

Proof of Lemma 3.4. (a) Assume that ϕ(t) and ψ(t) are the characteristic func-
tions of S′

1n and H1n, respectively. By Esseen inequality (see [11, page 146,
Theorem 5.3]), for any T > 0

sup
u

| ˜F1n(u)− ˜G1n(u)|

≤

∫ T

−T

∣

∣

∣

ϕ(t)− ψ(t)

t

∣

∣

∣
dt+ T sup

u

∫

|y|≤c/T

| ˜G1n(u+ y)− ˜G1n(u)|dy

:= H7 +H8.

The proof in Lemma 3.3(a) shows that E|g1nm|3 ≤ C
(

p

nb
1/2
n

)3/2
. Then from

Lemma 4.4, it follows that

|ϕ(t)− ψ(t)| =
∣

∣

∣
Eeit

∑k
m=1

z1nm −
k
∏

m=1

Eeitz1nm

∣

∣

∣

≤ C|t|α2/3(q)
k

∑

m=1

||z1nm||3 ≤ C|t|α2/3(q)
k
∑

m=1

||σ−1
1n g1nm||3

≤ C|t|α2/3(q)

k
∑

m=1

( p

nb
1/2
n

)(3/2)×(1/3)

≤ C|t|
k1/2α2/3(q)

b
1/4
n

.

Therefore H7 ≤ CT
k1/2α2/3(q)

b
1/4
n

.

Since s21n → 1, by Lemma 3.3(a), we have

sup
u

| ˜G1n(u+ y)− ˜G1n(u)| = sup
u

∣

∣

∣
G1n

(u+ y

s1n

)

−G1n

( u

s1n

)
∣

∣

∣
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≤ sup
u

∣

∣

∣
G1n

(u+ y

s1n

)

− Φ
(u+ y

s1n

)∣

∣

∣
+
∣

∣

∣
G1n

( u

s1n

)

− Φ
( u

s1n

)∣

∣

∣

+
∣

∣

∣
Φ
(u+ y

s1n

)

− Φ
( u

s1n

)∣

∣

∣

≤ 2 sup
u

∣

∣

∣
G1n(u)− Φ(u)

∣

∣

∣
+
∣

∣

∣
Φ
(u+ y

s1n

)

− Φ
( u

s1n

)∣

∣

∣

≤ C
{

γ
1/2
2n +

|y|

s1n

}

≤ C{γ
1/2
2n + |y|}.

Choose T = γ
−1/2
2n . Then H7 ≤ Ckb

1/2
n α2/3(q) and H8 ≤ CT

∫

|y|≤c/T
{γ

1/2
2n +

|y|}dy ≤ C{γ
1/2
2n + T−1} ≤ Cγ

1/2
2n . Therefore

sup
u

| ˜F1n(u)− ˜G1n(u)| ≤ C{kb1/2n α2/3(q) + γ
1/2
2n }.

(b) Following the line in the proof in (a), one can verify that supu |
˜F2n(u)−

˜G2n(u)| ≤ C{kb
1/2
n α2/3(q) + γ

1/2
2n }. �

Proof of Lemma 3.5. From (B3), it is easy to see that

E ˜fn(x) =
1

n

n
∑

j=1

1

bj
EK

(x−Xj

bj

)

=
1

n

n
∑

j=1

∫

R

K(u)f(x− bju)du

=
1

n

n
∑

j=1

∫

R

K(u)
(

f(x)− f ′(x)bju+
1

2
f ′′(x∗)b2ju

2
)

du

= f(x) +
b2n
2n

n
∑

j=1

( bj

bn

)2
∫

R

u2K(u)f ′′(x∗)du,

where x∗ is between x− bju and x. Note that
∣

∣

∣

∫

R

u2K(u)f ′′(x∗)du
∣

∣

∣
≤ sup

u∈U(x)

|f ′′(u)|

∫

R

u2|K(u)|du <∞

and n−1
∑n

j=1(
bj
bn
)2 = O(1). Then E ˜fn(x) = f(x) +O(b2n). �
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