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Negative Exponential Disparity Based Deviance and
Goodness-of-fit Tests for Continuous Models:
Distributions, Efficiency and Robustness

Dong-Bin Jeong' and Sahadeb Sarkar?

ABSTRACT

The minimum negative exponential disparity estimator (MNEDE), in-
troduced by Lindsay (1994), is an excellent competitor to the minimum
Hellinger distance estimator (Beran 1977) as a robust and yet efficient alter-
native to the maximum likelihood estimator in parametric models. In this
paper we define the negative exponential deviance test (NEDT) as an analog
of the likelihood ratio test (LRT), and show that the NEDT is asymptoti-
cally equivalent to the LRT at the model and under a sequence of contiguous
alternatives. We establish that the asymptotic strong breakdown point for
a class of minimum disparity estimators, containing the MNEDE, is at least
1/2 in continuous models. This result leads us to anticipate robustness of
the NEDT under data contamination, and we demonstrate it empirically.
In fact, in the simulation settings considered here the empirical level of the
NEDT show more stability than the Hellinger deviance test (Simpson 1989).
The NEDT is illustrated through an example data set. We also define a
goodness-of-fit statistic to assess adequacy of a specified parametric model,
and establish its asymptotic normality under the null hypothesis.

Keywords: Disparity based tests; Hellinger Distance; Likelihood Ratio Test; Min-
imum Disparity Estimation; Outliers; Residual Adjustment Function.

1. INTRODUCTION

The likelihood ratio tests used routinely for testing in parametric problems
have certain asymptotic optimality properties but are not, in general, robust
when data contain outliers. For a useful analysis of such data, a careful screening
for anomalous observations is a must before applying the likelihood ratio tesﬁs.
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Simpson (1989) proposed a more direct procedure in the form of the Hellinger de-
viance tests. These tests are robust under data contamination and asymptotically
equivalent to the likelihood ratio tests under local parametric alternatives. Before
Simpson’s (1989) work robust versions of Wald (1943) tests and the Rao (1948)
tests were studied by many authors in various settings (Beran 1981; Hampel,
Ronchetti, Rousseeuw and Stahel 1986).

The Hellinger deviance test is based on the minimum Hellinger distance esti-
mator (MHDE) The MHDE is first-order efficient and yet has certain robustness
properties (Beran 1977; Tamura and Boos 1986; Simpson 1987; Donoho and Liu
1988). Robustness of the M-estimation based procedures usually comes at the
cost of first order efficiency (Hampel et al. 1986). For the discrete models, Lind-
say (1994) introduced a class of density based distances called disparities and
defined minimum disparity estimators that are robust and efficient at the model.
Basu and Lindsay (1994) studied them under continuous models. The class of
disparities includes the Hellinger distance (HD), and the negative exponential
disparity (NED). That the minimum negative exponential estimator (MNEDE)
is an excellent competitor to the MHDE under the continuous models has been
shown by Basu, Sarkar and Vidyashankar (1997). Also see Basu and Sarkar
(1994a). Both MHDE and MNEDE are robust against outliers, but only the
MNEDE is resistant against inliers, defined as data points with less observed fre-
quencies than expected under the model. Moreover, the MNEDE is second order
efficient (Rao 1961) at the model, whereas the MHDE is only first order efficient. -

In this paper we study the NED based deviance test, and also a goodness-of-fit
test to judge adequacy of a chosen parametric model. However, our main focus is
on the deviance test. We present several results on the asymptotic distributions
of these tests. A strong breakdown point result for a class of minimum disparity
estimators, including the MNEDE, is also given. Theoretical and empirical results
show that, like the MNEDE to the MHDE, the negative exponential deviance test
(NEDT) is an excellent competitor to the Hellinger deviance test (Simpson 1989)
as a direct method for robust inferences.

The remainder of this paper is organized as follows: Section 2 briefly de-
scribes the MNEDE and its properties. In Section 3 we define the NEDT and
also a goodness-of-fit statistic. Section 4 establishes the asymptotic efficiency of
the NEDT at the model and under local alternatives, and also derives the asymp-
totic normality of the NED based goodness-of-fit test under the null hypothesis.
In Section 5 we extend Lindsay’s (1994) result to continuous models that the
asymptotic strong breakdown point for a class of minimum disparity estimators
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(including the MNEDE) is 1/2 or larger. Section 6 presents some simulation
results indicating that the NEDT is efficient at the model and robust under data
contamination. Moreover, in the settings considered here, the level of the NEDT
appears to be more stable than the Hellinger deviance test. An application to
an example data set is given in Section 7. Section 8 has a concluding discussion.
Finally, the Appendix contains proofs of results in Sections 4 and 5.

2. MINIMUM NEGATIVE EXPONENTIAL DISPARITY
ESTIMATION

Suppose that we have a random sample (X1, X5, , X,,) from a parametri¢
class of distributions Sg = {Fp,0 € O}, where © is a subset of R?. Assumé
that the distributions Fy are continuous and have probability density functions
fo. The density based minimum disparity estimates (Lindsay 1994; Basu and
Lindsay 1994) are computed by minimizing a nonnegative measure of discrepancy
PG, between a nonparametric density estimate and the model density fn, defined
by

pG(fn, fo) = /G(é(fn,(?,:c))ng(m) (2.1)

where G is a real-valued three times differentiable, strictly convex function on
[—1,00) with G(0) = 0, and &(z) = 0(fn,0,2) = (fu(z) — fo())/fo(z) denotes
the “Pearson” residual at the value . One can use a nonparametric kernel density
estimator defined by |

fulz) = / (23, hn)d B (y),

whereF), is the empirical distribution function, w is a smooth family of kernel
functions like the normal densities with mean y and standard deviation h,. Note
that (2.1) is the same as Csiszar’s (1963) f-divergence between f, and fy, which
is a form of generalization of Kullback-Leibler divergence and was independently
introduced by Ali and Silvey (1966).

The function G(8) = (6 + 1) log(é + 1) — & generates the likelihood disparity
whose minimizer in count data models gives the MLE. The Pearson’s chi-square
is produced by G(8) = 42, the power divergence family (Cressie and Read 1984)
by G(6) = [(6 + D M — 1]/A(\ + 1), the two times squared HD by G(6) =
2[(6 + 1)*/2 — 1]?, and the NED by G(6) = [e~% — 2]. Lindsay (1994) discussed
many other important disparities.

A value of § minimizing (2.1) is taken as the minimum disparity estimator.
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In particular, MNEDE is obtained by minimizing

pNED (fn, f3) = /{eXp[_(%

which is the NED between fn(m) and fy. Let V represent the gradient with respect
to . Under differentiability of the model, the minimum disparity estimating

— 1)} - 2}dFy(z),

equation takes the form
—Vpa = /A NV Ey(z) =0, where A(d) = (6+ 1)[(G’(6)] — G(9)

and G (8) denotes the first derivative of G(8). The function A(6) is an increasing
function on [~1,00) and can be standardized, without changing the estimates
produced by the disparity, so that for the standardized A(6) we have A(0) = 0
and A'(0) = 1, where A'(§) denotes the first derivative of A(6). This standardized
function is called the residual adjustment function of the disparity and determines
most of the theoretical properties of the estimators. For the likelihood disparity
the residual adjustment function is A(d) = ¢, for the squared HD it is A(0) =
2[(641)/2—1], and for the NED it is A(§) = 2—(2+0)e~?. For more discussion on
how HD and NED react to outliers and inliers in data, see Lindsay (1994), Basu
and Lindsay (1994) and Basu et al. (1997). While estimators generated by the
HD and NED are both first order efficient, only the MNEDE is also second order
efficient. Basu et al. (1997) established efficiency and robustness properties of
the MNEDE in continuous models. Using the MNEDE we define the NED based
deviance test and a goodness-of-fit test in the next section.

3. THE DEVIANCE AND GOODNESS-OF-FIT TESTS

First we discuss the deviance test. Let ©; be a proper subset of © and
consider the problem of testing the null hypothesis Hy : § € ©( against the
alternative hypothesis H, : @ € © \ ©g. The log likelihood ratio statistic is given
by A = 2n[L,(0) — Ly, ()], where Ly(0) = n™1 Yorq log(fe(X;)) is the average
log likelihood function, and # and @y are points obtained by maximizing Ly, (9)
over © and Oy, respectively. In general, for a disparity p¢ one can define the
disparity test statistic

de = _2n[PG(fn7fé) - pG(fnango)]

where 6 and 6y minimize pg(fy, f3) over © and Oy, respectively. Let Ogp and
0o, p denote the corresponding minimum disparity estimators for the HD, and
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Onpp and éo, ~Ep for the NED. The likelihood ratio test (LRT) A has the property
that if ©¢ is a g-dimensional subset of © and ©; is an r-dimensional subset of
Og, then the test of ©; against ©\ ©1 can be partitioned into a test of ©; versus
B0\ O and a test of O versus ©\©g. This property of A is shared by the deviance
tests dg. If G(6) = 2[(6 +1)/? —1)?, the d¢ becomes Simpson’s (1989) Hellinger
deviance test (HDT), defined by dyp = —2n[PHD(fn,f9HD) — pHD(fn’féO,HD)] :
On the other hand, if G(8) = (¢~ —2) we have the negative exponential deviance
test (NEDT) statistic

dNgD = _2”[PNEP(f”’féNED) - PNED(fn:féOYNED)]'

For discrete models, Sarkar, Song and Jeong (1998) considered the NEDT and
gave empirical results under the Poisson and geometric cases.

We now construct NED based goodness-of-fit tests for families of distributions
in testing the null hypothesis H} that the random sample (X, Xy,...,X,) is
generated by a member of S against the alternative hypothesis H; that Hj is not
true. For continuous models, Beran (1977, Section 5) discussed the above testing
problem using the Hellinger distance. In order to achieve comparable asymptotic
properties of the disparities based estimators and test statistics the disparities
need to be suitably standardized. Thus, to produce comparable test statistics
based on the HD and NED, we work with two times squared HD produced by
G(8) = 2[(6 + 1)¥/2 — 112, and the NED- form generated by G(6) = [e™® — 2].
Using this standardization and NED in place of HD in the definition of the test
statistic of Beran (1977, Theorem 8) we define the test statistic

Ay (Bnep) = {nhnonen(fa £, )17 Rulw|))/[hY?(2 7 Ralfwsew]?) /2

(3.1)
where R, is the range of X;s, w is the kernel function used in computing Fas -l
denotes the Ls-norm and w * w denotes the convolution of w and w.

For the count data models, Lindsay (1994) discussed the test dg when the
null hypothesis is simple. For discrete multivariate data, Basu and Sarkar (1994b)
and Jeong and Sarkar (2000), among others, have studied goodness-of-fit tests
based on disparities for both simple and composite hypotheses. 1

4. ASYMPTOTIC DISTRIBUTIONS

Simpson (1989) showed that the HDT is asymptotically equivalent to the
LRT under local parametric alternatives to Hy : 6 € ©p and hence enjoys first
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order efficiency within the parametric model Sg. This property is shared by
the NEDT. Assume that the following regularity conditions hold: fg(z) is twice
continuously differentiable with respect to 8, and pyep(g,8) can be twice differ-
entiable with respect to 6 under the integral sign. Using the fact that Aygpp(9)
and Ay pp(8)(1 4 &) are bounded, Basu et al. (1997, p. 358) gave a set of suf-
ficient conditions for the above. From the proof of Theorem 1 of Basu et al., it
then follows that, as ||t — 0,

pnED(fs fore) = pnep(f, fo) + L onpp(f fo) + 27 oy pp (f, fo)t + o(t]]),

uniformly in f, where p'NE p and pl]IVE p denote the first and second derivatives
with respect to 6. An estimator 6* is said to be first order efficient (Rao 1973, p.
32) if it satisfies

0* = 0 +n"Y21(0) 7 Z,(8) + 0p(n~1/?) (4.1)

under fy, where I(0) = [u(8,z)u(0,z)TdFy(z) with u(d,z) = Olog fo(z)/00
and Z,(0) = n~1/23" (6, X;). From Basu et al. (1997) it follows that the
MNEDE will satisfy (4.1) if the following approximation holds:

12 p(fas o) = Zn(8) + 0p(1). (4.2)

By the results of Basu et al. (1997) and Tamura and Boos (1986), (4.2) holds,
for example, for the normal location-scale model. If the model has countable
support and f,, is the empirical density, then (4.2) holds if f; / 2u(@) is also in Ly
(see Lindsay 1994; Simpson 1987). Some common models satisfying the latter
conditions are Poisson, geometric and log-series.

For a composite null hypothesis Hy : 6 € &g, assume that under Hy the
parameter § can be written as 8 = g(v) for v € N C R? with ¢ < p, and g has
a continuous derivative g (v) of order p x ¢ with rank g. It is also assumed that
the constrained estimator under Hy has the form 6§ = g(v*) with v* satisfying

v* = v+n" g @)1(g(v)g ()"} g(v) Za(g(v)T + 0p(n~H?)

under fg,). Then under the above assumptions a simple modification of Theorem
1 of Simpson (1989) gives the following result:

Theorem 1. For a fized 8y € @0 and ¢ € RP define 6, = 0y + cnl/2. Then under
fo, and as n — oo we have dygp = A+ 0p(1).
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Theorem 1 implies that, like the HDT, the NEDT has the same asymptotic
power as the LRT under local parametric alternatives.to Hy, and if dimension of
© is p and dimension of ©g is ¢ < p then the approximate null distribution of
dyep is X*(p — q)-

We defined the statistic d} zp in (3.1) for testing H{ versus H,. Following
Beran (1977, Sec 5) we present Theorem 2 on its asymptotic null distribution,
which may be used to carry out the test. The proof of and assumption (iv) used
in Theorem 2 are discussed in the Appendix.

Theorem 2. Assume the following: (i) w is symmetric about 0 and has a com-
pact support ¥ and w is twice continuously differentiable; (ii) fo is supported and
positive on a compact interval I; (i) nhi* = 0, nhl — o0 as n — oco; (iv)
conditions (a)-(d), (g9)-(i) of Theorem 1 of Basu et al. (1997) hold. Then, as
n — 0o, the limiting distribution of dy (8), under fp, is N(0,1).

Choice of the bandwidth A, in finite samples is very important. This problem
has received considerable attention in the literature. It has been studied by
Parzen (1962), Hardle et al (1988), Marron (1989), and Hall and Marron (1991)
among others. Following Simpson (1989) we have adopted here the approach of
Parzen. Parzen obtained the value of h, that minimizes the integrated mean
square error between a kernel density estimate and the true density f. More on
this is discussed in Section 6 below.

5. ROBUSTNESS

Here we establish that the asymptotic strong breakdown point(Lindsay 1994)
of a class of minimum disparity estimators, including the MNEDE, is 1/2 or
larger. For count data models, Lindsay gave such a result. We extend his result
to continuous models for a class of disparities, for which the function G has the
properties that G(—1) < oo and G(6)/d — 0 as § — oo. For example, this is
true for the NED with G(§) = €% — 2. Such a function G will be a decreasing
function.

Simpson (1989, Theorem 2) gave a breakdown point result for the HDT. We
anticipate that a similar result holds true for the NEDT, on the basis of our
breakdown point result for the MNEDE. But we do not have a proof at this
point. However, our empirical findings support our conjecture on the robustness
performance of the NEDT.
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We consider a fixed model density fp and contamination level €. For a given
dataset (X1, Xa,...,Xn), let f(z) denote a density estimate which is bounded,
i.e., 0 < f(z) < b Vz, for some b. If f(z) is a kernel density estimate it will be
bounded, for example, for normal family of kernels. Let {¢; : j = 1,2,...} be a
sequence of points on the support of fp. Define f; = (1 —¢) f + k% where k% is a
bounded density function defined on the interval 1% = (&; — A/2,&; + A/2), for
a small positive A. For example, k% may be taken to be a uniform density. Also
define f = (1 - €)f, which is no longer a density function if € > 0, but we can
still caleulate pg(fF, fo). Note that f represents the situation when the density
estimate is computed by simply discarding the outliers in the sample. Let

05(z) = (f3(z)/ folz) — 1), 6:(z) = (f (2)/ fo(z) — 1) (5.1)

denote the Pearson residuals corresponding to f;(z) and f}(z). Now one can
define an outlier sequence through the behavior of the Pearson residuals 6;(z) for
contaminated data and the density estimate f(z) for uncontaminated data, over
the interval I .

Definition 1. The sequence {{;} is said to be an outlier sequence if inf ¢; J;(z)
— 00 and supe; f(z) — 0 as j — oo.

In order for the minimum disparity estimation functional, denoted by T¢(+),
to be stable under data contamination, we would like the corresponding residual
adjustment function A(-) to be stable in the sense of Lindsay (1994, Definition
13), for which the following result gives a set of conditions.

Lemma 1. If for some k > 1, f]u(@,x)lk dFy(z) < o0, A(—=1) < oo and
A(8) = O(8%-D/k) g5 § — 0o, then A(-) is outlier stable for the model fo.

The proof is given in the Appendix. Lemma 1, for k¥ = 2, implies that if
the model fp has finite Fisher information, then a residual adjustment function
satisfying A(5) = O(6/2?) and A(~1) < oo is outlier stable. These conditions are
satisfied, for example, for the NED and HD.

Next in Theorem 3 we give a breakdown point result for the minimum dis-
parity estimation functional T in the following sense (Lindsay 1994, Definition
16):

Definition 2. The strong breakdown point of T¢() at the density f is the supre-

mum of the e-values for which Ta(f;) — Ta(f?) as j — oo for any outlier
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sequence {&;}.

Theorem 3. If G(—1) < oo, G(6)/§ — 0 as § — oo, then under some as-
sumptions (given in the Appendiz) on the behavior of pg, f and {fy,60 € O}, the
asymptotic strong breakdown point €* of Tg(+) at the model density fy is 1/2 or
larger.

The proof of Theorem 3 is discussed in the Appendix. Using Theorem 3,
under conditions of the dominated convergence, one can derive as j — oo,

pG(f]’-fTG(f])) _)pG(fe*ang(fE*)) (52)

The convergence in (5.2) implies that for extreme outliers and contamination
fraction e < €*, the distance from the contaminated density f; to Jra f;) is close
to that obtained by simply deleting the outliers from the data. Observe that (5.2)
holds, for instance, for a bounded disparity defining function G(-) on [—1, c0), as
in case of the NED and disparities with logistic function based residual adjustment
functions Ay(6) = 4X7eM /(1 + e*) — 1/2]. For NED, G(—6) = (e~? —2),
which is bounded by (e-2) on [—1,00). Therefore (5.2) holds by the dominated
convergence theorem since ’G((fj/fTG(fj)) - ]')fTG(fj)’ < (e—2) ‘fTG(fj)’ with
frs(s;) integrable, and, by Theorem 3, as j — oo G((fi/ fra(sp) — Ditets) —
G((fe/ fratrs) = Wita(s) - |

6. SIMULATIONS

We have performed a Monte Carlo study to empirically examine the theoret-
ical results on the NEDT, HDT and LRT in the normal settings, including those
used by Simpson (1989, Section 4). We have included the HDT in our simulations
to make a comparative study. For our simulations we have used FORTRAN and
various IMSL subroutines. ‘

We have generated data from contaminated distributions (1 — €)N(u, o?) +
eN(3,0?%), where ¢ denotes the contamination level, and p is the target parameter.
We test Hy that p is zero in two cases. In the first case, we assume that o is
known, and in the second, we treat o as unknown. For data generation, in both
cases o is set equal to one. We set p = 0 for examining the level performance
of the tests, and p = 0.5 for the power. Results corresponding to € = 0 would
indicate efficiency performance of the deviance tests. For checking robustness of
the tests we have chosen ¢ = 0.025,0.05 and 0.10.

For the MNEDE and MHDE we computed the kernel density f, using the
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Epanechnikov kernel:w(z) = 0.75(1 — z?) for |z| < 1, and 0 otherwise. Parzen
(1962) derived the value of Ay, that minimizes the integrated mean square error be-
tween a kernel density estimate and the true density f. When f is the N(u, o?)
density, for the above kernel, hy is of the form h, = (1.71877)(1.3640)n="/%.
If ¢ is unknown, then in the above formula of h,, the robust estimate s, =
(median(|X; — median(X;)|)/0.6745 can be used in place of . In our simula-
tions, the numerical integrals were computed using Simpson’s one-third rule, and
the Newton—dehson algorithm was used to solve for roots of the estimating equa-
tions. As initial estimates of x4 and o in the iterations we used (%) = median(X;)
and 6(0 = s,. The results presented here are all based on 5000 replications for
sample sizes 20, 30, 50 and 100, and for nominal levels 10%, 5% and 1%. For all
the tests we used the x2(1) critical values. Empirical level and power of the tests
have been presented in Tables 1 —4 for the known o case, and in Tables 5 — 8 for
the unknown o case.

We first discuss the results in Tables 1 —4. From the level values (correspond-
ing to . = 0) in Table 1, we see that the chi-squared approximation seems to work
pretty well for the NEDT. The loss in power (corresponding to x4 = 0.5, Table 1)
for the NEDT and HDT compared to the LRT is small. The loss in power for
the NEDT is generally higher than that for the HDT; but this may be expected
since the level values of NEDT are generally lower. Next consider Tables 2 — 4.
The numbers in Table 2 show that when the contamination proportion is 0.025
the level values of the LRT get inflated, whereas those of the NEDT and HDT
remain stable under this level of contamination. The empirical level of the NEDT
shows more stability compared to that of the HDT. As sample size increases the
level values increase for all the tests. The empirical power is higher for the HDT
than the NEDT. Next, from Table 3 we see that as contamination level increases
to 0.05, inflation in the level values of the LRT becomes even more pronounced.
Again, both NEDT and HDT show their robustness in terms of level performance;
in terms of level the NEDT appears to be more resistant against outliers than
the HDT, and the HDT achieves higher power than the NEDT. Finally, results
in Table 4 magnify the lack of robustness of the LRT, and show that even the
NEDT breaks down for a contamination proportion of 0.10 under the considered
settings. That the breakdown point of the HDT depends on the values of the
underlying distribution parameters has been shown by Simpson (1989, p. 111,
Example 1). We expect the same to be true for the NEDT as well.

We now discuss the results in Tables 5—8. The findings are similar to what we
have observed in Tables 1—4. The level values of the tests under no contamination
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in Table 5 (for 4 = 0) are generally higher than their counterparts in Table 1.
The level values of the LRT in Tables 6 — 8 show slower rate of breakdown in this
unknown variance case. On the other hand, the level values of the NEDT and
HDT show that their resistance against outliers breaks down under smaller level
of contamination, compared to the known variance case.

In terms of stability of empirical level under data contamination the NEDT
appears to perform better than the HDT. On the other hand, in terms of loss
of power under contamination the latter seems better. However, for sample sizes
larger than 30, the loss of power for the NEDT becomes comparable while the dif-
ference between empirical levels of the NEDT and HDT gets increasingly promi-
nent as the contamination level increases. Therefore, in the face of the possibility
of contamination in data having more than thirty observations, the NEDT may
be preferable to the HDT.

7. AN EXAMPLE

We consider a dataset on telephone-line faults analyzed previously by Welch
(1987) and Simpson (1989). The data came from an experiment to test a method
of reducing faults on telephone lines, and consisted of test and control fault rates
in fourteen matched pairs of areas. Assuming the additivity of the treatment
effect for the inverse fault rates Welch performed a matched-pairs test using the
median. Table 4 of Simpson (1989) shows the ordered differences between the
inverse test rates and the inverse control rates. Pair 1 difference (—988) in that
table seems to be unusually large in magnitude. By modeling the data as a ran-
dom sample from N(y,0?) distribution with both p, 0% unknown, Welch tested
Hy : = 0 against H, : g > 0 with or without pair 1 using his proposed random-
ized median test, and the LRT which is equivalent to the one sided matched-pairs
t test. Welch performed the tests both for the full data (i.e., pair 1 present) and
reduced data (i.e., pair 1 absent).  He found that for the full and reduced data
the p-values of LRT were 0.33 and 0.004 respectively, and for the randomized
median test they were .06 and .035 respectively.

For the above one-sided alternative hypothesis a signed disparity test is ap-
propriate and its asymptotic distribution is the same as the signed likelihood ratio
test (see Simpson 1989, p.109). We have carried out the signed NEDT using the
biweight kernel to compare our results with those of the signed HDT of Simpson
(1989). The estimated bandwidth value for the full data comes out to be 202.16.
The null and unconstrained MNEDEs of (i, o) are (0, 167.1) and (101.5, 120.1),
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respectively. On the other hand, Simpson’s null and unconstrained MHDEs of
(u, o) are (0, 169.5) and (116.8, 144.6), respectively. In Figure 1 we present the bi-
weight kernel density estimate, along with the normal densities corresponding to
the unconstrained MLE, and the unconstrained and null MNEDEs and MHDEs.
In the figure the six densities are denoted by Kernel, ML, MNED, MNED (Null),
MHD and MHD(Null), respectively. It shows that the unusual pair 1 observation
has been basically disregarded in the HD and NED estimation.

The signed NEDT value is 3.86 with p-value = 0.0010, obtained by comparison
with the #(13) distribution. For the reduced data, the signed NEDT value is
3.82 with p-value = 0.0011. The signed HDT value and associated p-value were
2.74 and 0.0085, respectively, for the full data; and they were 2.72 and 0.0093,
respectively, for reduced data. Judging by the p-values for the full and reduced
data, the effect of pair 1 on the signed HDT or signed NEDT is little, being more
negligible for the latter. In the presence of pair 1, a much smaller p-value for the
signed NEDT suggests that the signed NEDT has rejected the null hypothesis
more comfortably than the signed HDT.

8. DISCUSSION

In this paper we have shown that, like the MNEDE to the MHDE, the NEDT
is a very attractive alternative to the HDT as an efficient as well as robust proce-
dure. In fact, the NED test procedure appears to have more robust level perfor-
mance than the HDT in the settings considered in our simulations. Results from
application of the tests to the example data considered also support a slightly
better performance of the NEDT. Our breakdown point result for the MNEDE
and the empirical results for the NEDT lead us to strongly believe that a break-
down point result for the NEDT similar to that for the HD'T (Simpson 1989)
holds. We hope to present a proof in a future article. We have also constructed a
goodness-of-fit test statistic for continuous models and established its asymptotic
normality under the null hypothesis.

APPENDIX

Assumption (iv) in Theorem 2. Let {¢,} denote any sequence of estimators
converging to the true parameter § € © in probability, and let {ay} denote any
sequence of positive real numbers going to infinity and /g(z) the indicator func-
tion for a set B of real numbers. The conditions (a)-(d), (g)-(i) of Theorem 1 of
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Basu et al (1997) are listed below (for a discussion of these conditions see Basu
et al (1997, p. 362)): ‘
(a) For every {¢p} defined above, [ | f¢n () — fo, (z)|dz converges to zero in prob-
ability. ‘
(b) For every {¢,} defined above, [ |u*(¢y,z)fs, (z) —u?(0,z)fo(z)|dz converges
to zero in probability. \
(c) I(8) < oo, and [ |[u?(6,z + a) fo(z) — w*(6, z) fo(z)|dz — 0, as |a| — 0.

(d) limsup,,_, e SUPye fyymhnz s} J |75 (z + y)u(8, z)|dz < oo, where f, (z) de-
notes the second derivative of fg(z) with respect to z. .

(g) For every {a,} defined above, nsup,cy P(| X1 — hnt| > an) — 0.

(h) For every {ay} defined above, n=*/2h ([ [w(8, )l {z:|e|<an} |dT) — 0.

(i) For every {an} defined above, sup|;|<q, SuPcwifo(z + hnt)/fo(z)} = O(1).

Proof of Theorem 2. We write § for the MNEDE éNED , for brevity. Under
the given assumptions, from the results of Basu et al. (1997) we have, under

!

fﬂunl/Q(é —0) = Op(l)an_l/szED(fmfG) = Op(l)apljlvED(fnyfé)) = Op(1), and
hence a Taylor series approximation gives: nh,ll/ 2[,oN ED( Fo fs) —pPnED( Fn, fo)l =
op(1). Since R, — u(I) = op(n~t), where u(I) denotes the length of the interval
I, it then suffices to show that, under fy,

e (®) = {nhnpnep(Fa, fo)} = Q7 u(Dlwl®)]/ a2 @7 p(D)w « w]*)' /2]
— N(0,1) (A1)
in distribution. We now establish (A.1). Observe that for the NED with G(4) =
(e79—2), G'(0) =0, G'(0) =1 and G"(d) is bounded on [~1,00). For a
fixed z, letting y = fn(w) and yo = fy(z), by using a Taylor series expansion of
G((y/fe(z)) — 1) as a function of y at y = yy we obtain

nhl/2 ; —op1/2 [ o-10F _ 2i>_ 10 3 dn
B2 o (Fas fo) = bk /I 21, — £2) (fg /I 616"
1
f—g] (A.2)

where f*(z) is a point between f,(z) and fs(z). Consider the first term on the
right hand side of (A.2). Under the assumptions, from Corollary 1 of Rosenblatt
(1975) it follows that

(nif? [ = 7 (2 )3 = 022 P

lw = w|®)?] = N(0,1)
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in distribution, under fs. Next consider the second term on the right hand side
of (A.2) and it can be shown to be op(1) using the facts that G" (+) is bounded on
[—1, 00) and 1/ fp bounded on I, and modifying the arguments used in the proof of
Theorem 8 of Beran (1977). Therefore, (A.1) follows and this completes the proof.

Proof of Lemma 1. Modification of Lindsay’s (1994) arguments in the proof of
his Lemma 9 and Proposition 12 establishes that {¢;} is an outlier sequence if and
only if inf ¢; [l/nfg(m)] — 0o and sup¢; f(z) — 0 as j — oo; and that for an outlier
sequence {€;} pc(f, fo) — pa(ff, fo) as j — oo, Now, [|V fo(@)|(fo(a))~F/FF —

0 as |z| — oo since by assumption [ |u(6,z)[FdFy(x) < co. Since inf ¢; [0;(z)] —
00 as j — oo, the above implies that sup,e; {|V fod;(z)] (fo(d;(z Nk = 0 as
4 — oco. Next observe that

/A(5 NV Fp(x /A e (2))VEp(z) =

A(6j(2))VFy(z) — [ | Alde (2))VEFy(z).
I I
The proof then follows using arguments similar to those used in the proof of
Lindsay’s (1994, Proposition 14).

Assumptions for Theorem 3. (a) pg(f;, fo) and pg(fZ, fg) are continuous in
8, and the latter has a unique minimum at Tg(f¢) = b*. (b) pa(f;, fo) converges
to pa(f¥, fo) as j — oo, uniformly in 6, for any compact set B of parameter val-
ues containing b*. (c) For each 0 < 7 < 1 there exists a subset S of the support
of {Fy : 0 € O} such that f = [4dF(z) > 1 —~?, where F is the distribution
function of f, and {6 : fp(S f o dFy(z > v} is a compact set.

Proof of Theorem 3. Under the above assumptions (a)-(c) of Theorem 3, the
proof follows from a simple modification of arguments used in Lindsay (1994,
Lemmas 20, 21 and Proposition 22).
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Table 1. Empirical level and power of LRT, NEDT and HDT for the uncontaminaed
data(e = 0), when normal variance is known.

Sampling distribution: N(0,1) N(0.5,1)

Nominal level: 0.01 0.056 0.01 0.10 005 0.01

n = 20
LRT 10.26 5.12 0.98 72.78 61.14 37.38
HDT 10.26 434 0.84 7072 5776 33.38
NEDT 9.20 420 0.70 67.62 55.82 29.76

n = 30
LRT 10.32  5.02 1.12 86.14 78.02 56.68
HDT 9.82 490 1.04 84.40 75.36 53.32
NEDT 9.68 4.74 0.84 82.62 73.22 50.74

n = 50
LRT 10.28 4.86 0.88 97.18 94.14 83.32
HDT 9.78 4.80 0.82 96.62 93.18 80.78
NEDT 9.66 4.78 0.80 95.76  92.80 80.22

n = 100
LRT 10.30 5.16 0.80 99.98 99.92 99.50
HDT 9.78 4.78 0.78 99.98 99.90 99.20
NEDT 9.84 492 0.78 199.98 99.92 99.92

Table 2. Empirical level and power of LRT, NEDT and HDT for the uncontaminaed
data(e = 0.025), when normal variance is known.

Sampling distribution: 0.975N(0,1) + 0.025N(3,1) 0.975N(0.5,1) + 0.025N (3, 1)

Nominal level: 0.01 0.05 0.01 0.10 0.05 0.01
n =20
LRT 1596 9.84 3.16 © 7898 69.74 47.84
HDT 11.76 5.84 1.24 74.10 62.56 38.98
NEDT 8.60 3.74 0.56 68.50 54.82 28.60
n =30 o
LRT 16.64 9.80 3.10 91.04 84.94 68.22
HDT 11.14 6.04 1.38 87.82 79.66 59.34
NEDT 9.30 4.50 0.72 84.10  74.40 49.84
n = 50
LRT ©17.74  11.08 3.80 08.88 97.38 90.64
HDT 11.72  6.24 1.40 98.04 9540 86.62
NEDT 9.66  4.78 0.84 97.00 93.54 80.96
n = 100 ‘
LRT 21.58 14.56 5.28 100.00 99.98 99.86
HDT 13.40 7.70 1.94 100.00 99.98 99.68

NEDT 11.28  5.90 1.34 99.98 99.96 99.44
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Table 3. Empirical level and power of LRT, NEDT and HDT for the uncontaminaed
data(e = 0.05), when normal variance is known.

Sampling distribution:  0.95N(0,1) + 0.05N(3,1)  0.95N(0.5,1) -+ 0.05N(3,1)

Nominal level: 0.01 0.05 0.01 0.10 0.05 0.01
n = 20
LRT 23.30 15.78 6.40 84.46 76.88 57.90
HDT 13.62 6.84 1.98 77.64  66.82 43.92
NEDT 9.64 4.42 0.78 71.32 58.06 31.64
n =30
LRT 26.14 17.96 7.82 94.50  90.20 77.30
HDT 13.70 8.04 2.02 90.34  83.58 65.22
NEDT 10.38 540 1.10 86.38 77.14 53.96
n = 50
LRT 31.50 22.48 10.78 99.58  98.86 95.24
HDT 15.80 8.98 2.74 98.88  97.04 89.66
NEDT 11.60 6.14 1.24 97.48 . 94.94 84.00
n = 100 ‘
LRT 45.56  35.08 19.04 100.00  100.00 99.96
HDT 20.76  13.32 4.40 100.00  100.00 99.84
NEDT 14.88  8.30 2.22 99.98 99.94 99.56

Table 4. Empirical level and power of LRT, NEDT and HDT for the uncontaminaed
data(e = 0.10), when normal variance is known.

Sampling distribution:  0.90N(0,1) + 0.10N(3,1) 0.90N(0.5,1) + 0.10N (3, 1)

Nominal level: 0.01 0.05 0.01 0.10 0.05 0.01
n =20
LRT 41.20 32.44 18.22 91.68 86.94 72.56
HDT 19.00 11.64 3.78 82.66  73.90 53.60
NEDT 1244  6.70 1.50 75.60  63.80 37.66
n = 30
LRT 49.60 40.20 24.26 97.84  96.08 79.22
HDT 21.42 13.72 4.98 93.84  89.02 74.30
NEDT 14.98 8.06 1.92 89.02 81.36 60.90
n = 50
LRT 62.46 53.44 35.62 99.88  99.76 98.88
HDT 26.54 18.08 7.06 99.46  98.68 94.22
NEDT 16.94 10.12 3.16 98.46  96.44 88.82
n = 100 ‘
LRT 84.36 77.66 61.68 100.00 100.00 100.00
HDT 39.70 29.00 13.42 100.00  100.00 100.00

NEDT 2496 16.18 5.52 100.00  100.00 99.76
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Table 5. Empirical level and power of LRT, NEDT and HDT for the uncontaminaed
data(e = 0), when normal variance is known.

Sampling distribution: N(0,1) N(0.5,1)

Nominal level: 0.01 0.05 0.01 0.10 0.05 0.01

n =20
LRT 11.84 5.96 1.42 72.40 59.84 34.08
HDT 10.86 5.90 1.82 69.46 57.00 . 34.60
NEDT .44 4.70 0.66 63.02 5544 32.66

n = 30
LRT 11.24 5.80 1.34 85.64 76.68 53.16
HDT 10.02 5.12 1.40 87.70 74.24 - 51.56
NEDT 9.68 488 0.74 81.80 74.14 . 48.06

n = 50
LRT 10.78 5.64 1.16 96.96 93.60 81.18
HDT 9.90 5.10 1.10 96.36 92.52 79.52
NEDT 9.82 4.80 0.86 95.26 90.62 73.04

n = 100
LRT 10.58 4.98 0.98 100.00 99.92 99.34
HDT 9.48 4.46 0.86 99.98 99.90 99.08
NEDT 9.88 4.78 0.90 100.00 99.96 99.68

Table 6. Empirical level and power of LRT, NEDT and HDT for the uncontaminaed
data(e = 0.025), when normal variance is known.

Sampling distribution: 0.975N(0,1) + 0.025N(3,1) 0.975N(0.5,1) + 0.025N (3,1)

Nominal level: 0.01 0.05 0.01 0.10 0.05 0.01

n =20
LRT 13.02 6.36 1.38 76.60  64.58 37.52
HDT 12.38 6.64 2.02 73.34  61.12 38.16
NEDT 7.04 3.26 0.64 71.76  59.94 34.66

n = 30
LRT 12.98 6.74 1.42 89.42 81.72 58.64
HDT 1090 6.20 1.54 87.24  78.88 56.60
NEDT 8.50 4.06 0.70 83.56  71.90 43.58

n = 50
LRT 13.44 7.88 1.74 98.50 96.38 86.32
HDT 11.56 6.46 1.54 97.96 94.90 83.98
NEDT 8.98 4.38 0.82 96.92 93.04 77.66

n = 100
LRT 16.78 10.20 2.82 100.00 99.98 99.84
HDT " 1344 7.90 1.92 100.00 99.98 99.60

NEDT 10.84  5.36 1.06 99.98 99.96 99.28
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Table 7. Empirical level and power of LRT, NEDT and HDT for the uncontaminaed
data(e = 0.05), when normal variance is known.

Sampling distribution: 0.95N(0,1) + 0.056N(3,1)  0.95N(0.5,1) + 0.05N (3, 1)

Nominal level: 0.01 0.05 0.01 0.10 0.05 0.01

n = 20
LRT 15.68 7.82 1.86 80.44  69.54 41.54
HDT 14.46  7.86 2.56 80.82  68.28 45.90
NEDT 8.90 4.16 0.72 78.36  65.02 40.08

n =30
LRT 17.42 10.00 2.22 92.36  86.06 64.56
HDT 14.66  8.62 2.30 90.22 83.22 62.28
NEDT 10.22 5.12 1.06 86.46 75.96 48.78

n = 50
LRT 21.94 13.50 3.56 99.28  97.98 90.50
HDT 17.50 10.02 2.76 98.88  96.92 88.72
NEDT 1244 6.46 1.20 97.72 95.26 82.26

n = 100
LRT 34.58 23.68 8.32 100.00 100.00 99.94
HDT 24.68 15.26 5.48 100.00 100.00 99.82
NEDT 1774  9.94 2.38 99.98  99.98 99.60

Table 8. Empirical level and power of LRT, NEDT and HDT for the uncontaminaed
data(e = 0.10), when normal variance is known.

Sampling distribution: 0.90N(0,1) + 0.10N(3,1)  0.90N(0.5,1) + 0.10N(3, 1)

Nominal level: 0.01 0.05 0.01 0.10 0.05 0.01
n =20
© LRT 25.16  14.28 3.76 86.78  77.50 49.98
HDT 22.50 13.84 4.70 83.54 74.14 49.90
NEDT 14.76 7.38 1.34 82.40 72.08 46.98
n = 30
LRT 32.50 20.92 5.96 96.32 92.24 75.50
HDT 26.90 18.20 5.62 94.64  89.66 72.88
NEDT 19.20 10.20 2.30 91.78 84.14 59.20
n = 50 _ ‘
LRT 45.94 32.82 12.78 99.80  99.54 96.20
HDT 36.14 25.96 9.96 99.58  98.92 94.92
NEDT 27.26 16.44 4.24 99.46  98.66 94.08
n = 100
LRT 72.68 61.08 33.98 100.00 100.00 100.00
HDT 57.84 45.62 23.48 100.00 100.00 100.00

NEDT . 4316 31.18 12.34 100.00  100.00 99.84
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Figure 1. Six Density Estimates for the Telephone-Line Faults Data
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