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Abstract
In this paper, we present a permutation test to select the number of pairs of canonical variates in canonical

correlation analysis. The existing chi-squared test is known to be limited to normality in use. We compare the
existing test with the proposed permutation test and study their asymptotic behaviors through numerical studies.
In addition, we connect canonical correlation analysis to regression and we we show that certain inferences
in regression can be done through canonical correlation analysis. A regression analysis of real data through
canonical correlation analysis is illustrated.
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1. Introduction

Principal component analysis should be one of the most favorable statistical methods for dimension re-
duction in high-dimensional data analysis. When a relationship between two sets of high-dimensional
variables is of interest, principal component analysis may not be useful, because it does conduct a
marginal dimension reduction of each set without considering any association between the two sets.

Canonical correlation analysis(CCA) replaces the original two sets of variables with pairs of linear
combinations from two sets of variables, acquired through the maximization of the Pearson correlation
between the two sets. The linear combination pairs and their correlations are called canonical variates
and canonical correlations, respectively. A few pairs of canonical variates are expected to represent
the original sets of variables to explain their relation and variabilities. Therefore, when we need to do
simultaneous dimension reduction for two sets of variables, CCA can achieve a potentially better and
more reliable dimension reduction than principal component analysis.

This paper develops a permutation test and compares it with the existing chi-squared test in the
determination of the number of pairs of canonical variates. Since the chi-squared test assumes nor-
mality, it may mislead the determination under its violation. Since the permutation test does not
require normality, it should be a possible alternative to the chi-squared test against non-normality.
By the comparison of the two tests, we will investigate the robustness of the chi-squared test to non-
normality. In addition, we study the relation between CCA and regression. One special case to study
the association between two sets of variables should be to study changes of univariate or multivariate
responses in distribution as predictors vary. In such case univariate or multivariate regression should
be a popular statistical tools. We will show that certain inferences in regression can be done through
CCA.
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The organization of the paper is as follows. In Section 2 we review canonical correlation anal-
ysis. Section 3 is devoted to the development of a permutation test to select the number of pairs of
canonical variates and compare the performance of the chi-squared tests via numerical studies. We
will investigate a relation between canonical correlation analysis and regression in Section 4. Section
5 contains real data application. In Section 6, we summarize our work.

2. Canonical Correlation Analysis

2.1. Canonical correlation analysis

Suppose that our interest is placed onto studying an association of two sets of variables of X ∈ Rp

and Y ∈ Rr. Define that cov(X) = ΣX > 0, cov(Y) = ΣY > 0, ΣXY = cov(X,Y) and ΣT
XY = cov(Y,X).

Considering two linear combinations of X and Y of U = aTX and V = bTY, we have var(U) = aTΣXa,
var(V) = bTΣYb, and cov(U,V) = aTΣXYb, where a ∈ Rp×1 and b ∈ Rr×1. We pursue to construct a
and b to maximize Pearson-correlation between U and V:

corr(U,V) =
aTΣXYb√

aTΣXa
√

bTΣYb
. (2.1)

Classical CCA constructs such a and b based on the following criteria:

1. The first canonical variate pair (U1 = aT
1 X,V1 = bT

1 Y) is constructed from the maximization of
(2.1).

2. The second canonical variate pair (U2 = aT
2 X,V2 = bT

2 Y) is constructed from the maximization of
(2.1) with restriction that var(U2) = var(V2) = 1 and (U1,V1) and (U2,V2) are uncorrelated.

3. At the k step, the kth canonical variate pair (Uk = aT
k X,Vk = bT

k Y) is obtained from the maximiza-
tion of (2.1) with restriction that var(Uk) = var(Vk) = 1 and (Uk,Vk) are uncorrelated with the
previous (k − 1) canonical variate pairs.

4. Repeat Step 1 and Step 3 until q = min(p, r).

5. Select the first d pairs of (Uk,Vk) to represent the relationship between X and Y.

Then the according pairs (ai,bi) are obtained as follows: ai = Σ
−1/2
X ψi and bi = Σ

−1/2
Y ϕi for

i = 1, . . . , q, where (ψ1, . . . ,ψq) and (ϕ1, . . . ,ϕq) are the q eigenvectors of Σ−1/2
X ΣXYΣ

−1
Y Σ

T
XYΣ

−1/2
X and

Σ
−1/2
Y ΣT

XYΣ
−1
X ΣXYΣ

−1/2
Y , respectively, with the corresponding common eigenvalues of ρ∗21 ≥ · · · ≥ ρ∗2q ≥

0. Then matrices of Ad = (a1, . . . , ad) and Bd = (b1, . . . ,bd) are called canonical direction matrices
for d = 1, . . . , q. For more details regarding the CCA, readers may refer to Johnson and Wichern
(2007). In practice, ΣX , cov(Y), ΣXY , and ΣY are replaced with their usual moment estimators of Σ̂X ,
Σ̂Y , Σ̂XY , and Σ̂YX . Throughout the rest of the paper, a notation of d will stand for the true number of
pairs of canonical variates.

3. Permutation Test in Canonical Correlation Analysis

3.1. Permutation test

To determine how many canonical covariate pairs should be selected in CCA for two sets of variables
of X ∈ Rp and Y ∈ Rr, large sample inferences by Bartlett (1938, 1939) are widely used. Recalling
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q = min(p, r), the inference procedure sequentially tests the following hypotheses:

H0 : d = m versus H1 : d > m, m = 0, 1, . . . , (q − 1).

Beginning with m = 0, if H0 : d = m is rejected, increment m by 1 and redo the test. We stop the test
the first time that H0 is not rejected and setting d̂ = m. This test procedure requires a test statistic for
H0 : d = m, and, as the statistic, Bartlett (1938, 1939) proposed

Λ̂BT
m = −

{
n − 1 − 1

2
(p + r + 1)

} q∑
i=m+1

log
(
1 − ρ̂∗2i

)
, m = 0, 1, . . . , (q − 1),

where ρ̂∗21 ≥ · · · ≥ ρ̂∗2q are the ordered eigenvalues of Σ̂
−1/2
X Σ̂XY Σ̂

−1
Y Σ̂

T
XY Σ̂

−1/2
X .

If X and Y are jointly normal, Λ̂BT
m tends to converge in distribution to χ2

(p−m)(r−m) under H0 :
d = m. In practice, however, if the normality is a cause of concern, Λ̂BT

m may be problematic for the
determination of d.

Here we propose a permutation test to estimate d as a possible alternative of the Barttlet test
against non-normality. The proposed test procedure does not assume underlying distributions of X
and Y. Therefore, the permutation test may have potential advantages over the Bartlett test under
violation of normality. We describe how to conduct the permutation test in CCA as follows:

(1) Under H0 : d = m, using the original data of X and Y, compute T̂m and partition eigenvectors of
Σ̂
−1/2
X Σ̂XY Σ̂

−1
Y Σ̂YXΣ̂

−1/2
X as follows:

T̂m =

p∑
i=m+1

ρ̂∗2i and Ψ̂1 =
(
ψ̂1, . . . , ψ̂m

)
, Ψ̂2 =

(
ψ̂m+1, . . . , ψ̂p

)
,

where ρ̂∗21 ≥ · · · ≥ ρ̂∗2q and ψ̂i are the eigenvector corresponding to ρ̂∗2i . We will denote T̂m from
the original data as T̂ ref

m .

(2) Let ẐXi = Σ̂
−1/2
X (Xi − X̄), where Xi stands for the ith observation of X and X̄ is the sample mean

vector of X, that is, X̄ = (1/n)
∑n

i=1 Xi. Construct Ûi = ẐT
Xi
Ψ̂1 and Ŵi = ẐT

Xi
Ψ̂2.

(3) Randomly permute the indices i of the Ŵi to obtain the permuted set Ŵ∗
i .

(4) Construct the test statistic T̂m by applying usual canonical correlation analysis to the permuted
data of (Û, Ŵ∗) and Y. We will denote T̂m from the permuted data as T̂ perm

m .

(5) Repeat Step (3)–Step (4) N times. The p-value of testing H0 : d = m is the fraction of T̂ perm
m s that

exceed T̂ ref
m .

Since each of N permutations is not always the same, p-values should be different. Experience tells
that N = 500 should be fine with most cases.

3.2. Comparison of the Bartllet chi-squared test via numerical studies

As numerical studies we constructed two sets of variables of X and Y as follows:

Model 1 X = (X1, . . . , X10) iid∼ N(0, 1) and Y = (Y1,Y2), where Y1 = sin(X1 + X2) + ε1, Y2 = 2∗
sin(X1 + X2) + ε2.
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Table 1: Simulation results for Model 1 in Section 3.2
Permutation test Barttlet test

d̂ = 0 d̂ = 1 d̂ ≥ 2 d̂ = 0 d̂ = 1 d̂ ≥ 2
n = 50 1.5 90.5 8.0 1.5 92.0 6.5

ε
iid∼ N(0, 1) n = 100 0.0 94.5 5.5 0.0 95.0 5.0

n = 200 0.0 95.0 5.0 0.0 95.0 5.0
n = 50 27.5 67.5 5.0 84.5 76.0 3.5

ε
iid∼ t3 n = 100 3.0 92.0 5.0 87.8 94.5 5.0

n = 200 0.0 94.5 5.5 90.4 95.0 5.0
n = 50 11.0 85.5 5.0 12.0 81.5 6.5

ε
iid∼ U(−2, 2) n = 100 3.0 92.0 5.0 87.8 96.0 4.0

n = 200 0.0 95.0 5.0 90.4 93.5 6.5
n = 50 7.0 89.0 4.0 6.0 90.5 3.5

εi
indep∼ U(−i, i) n = 100 0.0 92.5 7.5 0.0 93.0 7.0

n = 200 0.0 96.0 4.0 0.0 95.5 4.5

In Model 1, we considered four types of the distributions for ε = (ε1, ε2), which is independent
of X in all cases: (1) ε iid∼ N(0, 1); (2) ε iid∼ t3; (3) ε iid∼ U(−2, 2); (4) εi

indep∼ U(−i, i), i = 1, 2, where
notations of tk and U(−k, k) stand for student t distribution with k degrees of freedom and continuous
uniform distribution from −k to k, respectively.

By the variable configurations, the joint distribution of X and Y is not normal for all types of ε,
and the relation between X and Y is not linear. In addition, one pair of canonical variates of X1 + X2
and (Y1 + Y2)/2 for X and Y should be adequate to summarize the association between X and Y, and
hence we have d = 1. For both tests, we considered n = 50, 100 and 200, and Model 1 was iterated
500 times for each case of ε. In addition, the number of permutations was 500. The results of the
sequential tests for d = 0 and d = 1 through the Barttlet test and the permutation test are summarized
in Table 1.

These simulation results represent the characteristic behaviors in the estimation of d observed in
other simulations. Regardless of the distributions of random errors of ε, the two tests showed similar
results. According to Table 1, (surprisingly and a bit disappointingly), the proposed permutation test
for the estimation of d did not show clear dominance over the Barttlet test for most simulation models.
The two tests provided similar results, and hence it can be concluded that the joint normality between
X and Y is not problematic in the Barttlet test. In practice, however, the two tests can determine the
estimate of d differently. If so, one can take advantage of the permutation test for the decision to select
the number of pairs of canonical variates, and hence they can withdraw a more reliable conclusion for
the estimation of d.

4. Application of Canonical Correlation Analysis in Regression Analysis

4.1. Canonical direction matrix and ordinary least squares

Suppose that we consider regression of Y ∈ Rr |X ∈ Rp with r ≥ 1. Most of regression problems
deal with parametric or non-parametric modeling through predictors X. Therefore, to connect CCA
and regression, we consider the canonical direction matrix Ad alone, which is related to X. Also we
define that S(M) represent a subspace spanned by the columns of a p × r matrix M,

The canonical direction matrix Ad for X is equal to Ad = Σ
−1/2
X (ψ1, . . . ,ψd), where vectors of ψi,

i = 1, . . . , d, are the eigenvectors corresponding to its non-zero ordered eigenvalues Σ−1/2
X ΣXYΣ

−1
Y Σ

T
XY

Σ
−1/2
X . Therefore, it can be easily noted that the set of the vectors of (ψ1, . . . ,ψd) forms an orthonormal
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basis matrix of S(Σ−1/2
X ΣXYΣ

−1
Y Σ

T
XYΣ

−1/2
X ). Then, by the following equivalence of

Σ
−1/2
X ΣXYΣ

−1
Y Σ

tr
XYΣ

−1/2
X = Σ

−1/2
X ΣXYΣ

−1/2
Y Σ

−1/2
Y ΣT

XYΣ
−1/2
X =

(
Σ
−1/2
X ΣXYΣ

−1/2
Y

) (
Σ
−1/2
X ΣXYΣ

−1/2
Y

)T
,

we easily have S(Σ−1/2
X ΣXYΣ

−1
Y Σ

T
XYΣ

−1/2
X ) = S(Σ−1/2

X ΣXYΣ
−1/2
Y ). Therefore, we can establish the fol-

lowing relation from the above equivalence:

S(Ad) = Σ−1/2
X S

(
Σ
−1/2
X ΣXYΣ

−1/2
Y

)
= S

(
Σ
−1/2
X Σ

−1/2
X ΣXYΣ

−1/2
Y

)
= S

(
Σ−1

X ΣXYΣ
−1/2
Y

)
. (4.1)

Since, for a p× r matrix, post-multiplication of any r× r non-singular matrix does not change its rank
and column space, we derive the following relation from the last equivalence of (4.1):

S(Ad) = S
(
Σ−1

X ΣXYΣ
−1/2
Y

)
= S

(
Σ−1

X ΣXYΣ
−1/2
Y Σ

1/2
Y

)
= S

(
Σ−1

X ΣXY

)
= S(β). (4.2)

The last equivalence of (4.2) directly implies that the columns of the canonical direction matrix for
X and those of the OLS coefficient matrix span the same subspace. Therefore, whenever we have to
do inference about S(β), for example its dimension or basis estimation, it can be done through CCA.
In the next three subsections, we will show how CCA can be directly applied in regression inference
problems by the relation of (4.2).

4.2. Linear regression: ANOVA F-test

In linear regression of Y ∈ R1 |X ∈ Rp, ANOVA F-test is to test the hypotheses of H0 : all βis
are equal to zero against H1 : at least one of βis is not zero. Geometrically, the null hypothesis can
be equivalently interpreted as H0 : dim(S(β)) = 0. Then the ANOVA F-test is equivalent to test
H0 : d = 0 in CCA, or equivalently Σzxzy = 0. Therefore, the F-test can be alternatively done via
either the Barttlet test or the permutation test in CCA.

4.3. Linear regression: Brusch-Pagan test for heteroscedasticity

Breusch-Pagan test (1979) is one among many tests for heteroscedasticity in the linear regression of
Y ∈ R1 |X ∈ Rp. To conduct the test, several assumptions are required: error terms are independently
normal and their variance σ2

i has the following relation to X = (X1, . . . , Xp):

logσ2
j = γ0 +

p∑
i=1

γiXi j, j = 1, . . . , n. (4.3)

Under (4.3), if one of γis, i = 1, . . . , n, is not zero, then the regression has heteroscedasticity. To test
H0 : γ1 = · · · = γp = 0 against H1 : one of γis, at least, is not zero, the following procedure is taken:

(1) Compute the residuals ei and usual sums of square of error, SSE from the OLS fit of Y |X.

(2) Obtain usual sums of square of regression, SSR∗, from the OLS fit of e2 |X.

(3) Compute X2 = (SSR∗/2)/(SSE/n)2.

(4) Then X2 has the asymptotic χ2 with p degrees of freedom.

Then the null hypothesis of the Brusch-Pagan test is equivalent to the hypothesis of dim(S(γ)) = 0,
where γ = (γ1, . . . , γp). That is, we must test that the space spanned by the OLS coefficient vector
from the regression of e2 |X is the null space. Then it can be simply done through testing H0 : d = 0
in usual CCA application of two sets of variables of X and e2.
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4.4. Reduced-rank regression

When the interest is placed on changes of multi-dimensional responses in distribution as predictors
vary, multivariate linear regression should be one of the popular statistical tools. The classical multi-
variate linear regression of Y ∈ Rr |X ∈ Rp with r ≥ 2 is as follows:

Y |X = α +MTX + ε, (4.4)

where α ∈ Rr is an intercept vector, M ∈ Rr×p is an unknown coefficient matrix, the error vector
ε ∈ Rr ∼ MN(0,Σ ≥ 0) is independent of X. A notation of MN stands for multivariate normal
distribution. In addition, it is assumed that Σ > 0 throughout the rest of the paper.

A classical reduced-rank regression under (4.4) is defined, if rank(M) < min(p, r). Therefore,
the reduced-rank regression has been mostly used, when there is a necessity to reduce the number
of parameters in (4.4). The reduced-rank regressions have a wide spectrum of applications in fields
such as chemometrics, psychometrics, econometrics, and financial economics. The analysis of the
reduced-rank regression is conducted under the assumption that the coefficient matrix B is not of full
rank.

In the reduced-rand regression, the elements of M are subsequently estimated for a given value of
the rank of M, and M is be replaced by the ordinary least square, β = Σ−1

X ΣXY , under (4.4).
Since β is not full-column rank by the assumption of the reduced-rank regression, it can be ex-

pressed as β = ηγ, where η ∈ Rp×d and γ ∈ Rd×r. Then, in (4.4), B can be replaced with ηγ:

Y |X = α + γT
(
ηTX

)
+ ε.

In the regression model above, γ is nothing but the OLS coefficient matrix from the regression of
Y | ηTX. Therefore, once η is known, γ can be easily constructed.

It can be easily noted that η forms a basis matrix of S(β). Then such η is clearly not unique. That
is, for any other basis η∗ of S(β), the relation of β = η∗γ∗ and the following equation hold:

Y |X = α + γT
∗
(
ηT
∗X

)
+ δ.

In addition, the reduced-rank regression under (4.4) forces the following equivalences:

E(Y |X) = E
(
Y |MTX

)
= E

(
Y |βTX

)
= E

(
Y | ηTX

)
= E

(
Y | ηT

∗X
)
. (4.5)

The equivalence (4.5) directly implies that lower-dimensional linearly transformed predictors of either
ηTX or ηT

∗X can replace the original p-dimensional predictor X without information on E(Y |X).
Therefore, the primary interest of the reduced-rank regression is placed onto the estimation of any
orthonormal basis matrix η of S(β).

Then the key-equivalence of S(Ad) = S(β) in (4.2) directly implies that Ad should be one of
possible choice of η. Therefore, one can easily accomplish reduced-rank regression of Y |X through
a canonical direction matrix for X acquired by usual CCA application of X and Y. That is, we can
replace X with AT

d X without loss of information on E(Y |X).
Since most statistical packages provide functions or procedures to conduct CCA, one can do

reduced-rank regression, if necessary, although the packages do not provide those for reduced-rank
regression.
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Table 2: Determination of the number of pairs of canonical variates in Section 4
Permutation test Barttlet test

H0 : d = 0 vs. H1 : d > 0 0.000 0.000
H0 : d = 1 vs. H1 : d > 1 0.150 0.165
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3 4 5 6 7
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Figure 1: A scatter plot matrix of the first estimated canonical variate for predictors and two responses in Section
4: cca.dir1, the first estimated canonical variate for predictors; log.bplasma, log-scale beta-carotene plasma

concentration levels; log.rplasma, log-scale retinol plasma concentration levels

5. Real Data Application: Beta-Carotene Plasma

For illustration purpose, we investigate a reduced-rank regression study of Beta-carotene and Retinol
plasma concentration levels given the following dietary factors and smoking status: (1) dietary beta-
carotene consumed (mcg per day, bet); (2) grams of fat consumed per day (fat); (3) number of calories
consumed per day (cal); (4) grams of fiber consumed per day (fiber); (5) dietary retinol consumed
(mcg per day) (ret); (6) quetelet (weight/height2, quet); (7) vitamin usage (1 = often; 2 = sometimes;
3 = no usages, vit); (8) smoker (0 = non-smoker; 1 = former smoker; 2 = current smoker).

This study was originally done in Nierenberg et al. (1989). They found that dietary carotene
was positively related to Beta-carotene levels, while Quetelet was negatively related. The data was
obtained from StatLib webpage and used under permission. Since cases with numbers 257 was sus-
pected as an outlier, they were deleted from the data set, and the total number of sample sizes were
314.

We log-transformed 5 continuous predictors other than quetelet, which was transformed to its
inverse scale to reduce variabilities in predictors. Vitamin usages and smoker were re-coded with
dummy variables such that vit2 (1, if vitamin usage = 2 and 0, otherwise), vit3 (1, if vitamin usage =
3 and 0, otherwise), smoker1 (1, if smoker = 1 and 0, otherwise), and smoker2 (1, if smoker = 2 and
0, otherwise). Therefore, the total numbers of predictors and responses were 10 and 2, respectively.

We conducted the the Barttlet and permutation tests for the data, and the test results are reported
in Table 2. We used 500 permutations for the permutation test. According to Table 2, the results from
the permutation and Barttlet tests are the same with level 5%, and both tests determine that d̂ = 1.
Therefore, one linear combination of X can summarize the two-dimensional response regression sum-
marized in Figure 1 with the log-transformed responses. The estimated canonical covariate (cca.dir1)
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for the predictors is defined as follows:

cca.dir1 = − 0.513 log(bet) + 0.553 log(fat) − 0.039 log(cal) − 0.627 log(fiber) + 0.052 log(ret)

− 68.619 quet−1 + 0.122 smoke1 + 0.719 smoke2 + 0.501 vit2 + 1.048 ∗ vit3.

In Figure 1, the red-colored line is the OLS fitted line and the blue-colored line stands for LOWESS
smooths with smoothing parameter 0.7. For beta-carotene plasma concentration levels, the simple
linear regression should be fine, while no relation is expected for retinol plasma concentration levels
and predictors.

6. Discussion

In the paper, we propose a permutation test to determine the number of pairs of canonical variates. The
permutation test can be considered as non-parametric and it can be a possible alternative of the existing
chi-squared test developed by Barttlet (1938, 1939) against non-normality. Various numerical studies,
however, show that the latter is robust to non-normality and provide about the same accuracy as the
proposed permutation test. In practice, one can enjoy potential advantages to select the number of
pairs of canonical variates more reliably by conducting both tests. In addition, we investigate relation
between canonical correlation analysis and regression. We show that certain inferences of regression
analysis, for example ANOVA F-test, tests for heteroscedasticity, and reduced-rank regression, can be
done via canonical correlation analysis. We hope that this paper re-highlights methodological merits
of canonical correlation analysis that is often forgotten in high-dimensional data analysis.
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