• Title/Summary/Keyword: Asymmetrical inverter

Search Result 46, Processing Time 0.025 seconds

Reduction of Common Mode Voltage in Asymmetrical Dual Inverter Configuration Using Discontinuous Modulating Signal Based PWM Technique

  • Reddy, M. Harsha Vardhan;Reddy, T. Bramhananda;Reddy, B. Ravindranath;Suryakalavathi, M.
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1524-1532
    • /
    • 2015
  • Conventional space vector pulse width modulation based asymmetrical dual inverter configuration produces high common mode voltage (CMV) variations. This CMV causes the flow of common mode current, which adversely affects the motor bearings and electromagnetic interference of nearby electronic systems. In this study, a simple and generalized carrier based pulse width modulation (PWM) technique is proposed for dual inverter configuration. This simple approach generates various continuous and discontinuous modulating signals based PWM algorithms. With the application of the discontinuous modulating signal based PWM algorithm to the asymmetrical dual inverter configuration, the CMV can be reduced with a slightly improved quality of output voltage. The performance of the continuous and discontinuous modulating signals based PWM algorithms is explored through both theoretical and experimental studies. Results show that the discontinuous modulating signal based PWM algorithm efficiently reduces the CMV and switching losses.

Induction Heated Load Resonant Tank High Frequency Inverter with Asymmetrical Auxiliary Active Edge-Resonant Soft-Switching Scheme

  • Saha Bishwajit;Fathy Khairy;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.200-202
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbing circuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft-switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

A New Single-Phase Asymmetrical Cascaded Multilevel DC-Link Inverter

  • Ahmed, Mahrous;Hendawi, Essam
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1504-1512
    • /
    • 2016
  • This paper presents a new single-phase asymmetrical cascaded multilevel DC-link inverter. The proposed inverter comprises two stages. The main stage of the inverter consists of multiple similar cells, each of which is a half-bridge inverter consisting of two switches and a single DC source. All cells are connected in a cascaded manner with a fixed neutral point. The DC source values are not made equal to increase the performance of the inverter. The second circuit is a folded cascaded H-bridge circuit operating at a line frequency. One of the main advantages of this proposed topology is that it is a modular type and can thus be extended to high stages without changing the configuration of the main stage circuit. Two control schemes, namely, low switching with selective harmonic elimination and sinusoidal pulse width modulation, are employed to validate the proposed topology. The detailed approach of each control scheme and switching pulses are discussed in detail. A 150W prototype of the proposed system is implemented in the laboratory to verify the validity of the proposed topology.

A Single-Phase Cell-Based Asymmetrical Cascaded Multilevel Inverter

  • Singh, Varsha;Pattnaik, Swapnajit;Gupta, Shubhrata;Santosh, Bokam
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.532-541
    • /
    • 2016
  • A single-phase asymmetrical cascaded multilevel inverter is introduced with the goal of increasing power quality with the reduction of power in insulated-gate bipolar transistor (IGBT) switches. In the present work, the proposed inverter topology is analyzed and generalized with respect to different proposed algorithms for choosing different voltage source values. To prove the advantages of the proposed inverter, a case study involving a 17-level inverter is conducted. The simulation and experimental results with reduced THD are also presented and compared with the MATLAB/SIMULINK simulation results. Finally, the proposed topology is compared with different multilevel inverter topologies available in the literature in terms of the number of IGBT switches required with respect to the number of levels generated in the output of inverter topologies.

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.

Series Load Resonant Soft-Switching PWM High Frequency Inverter with Auxiliary Active Edge-Resonant Snubber

  • Saha, Bishwajit;Kim, Hun-Ho;Han, Ho-Dong;Kwon, Soon-Kurl;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.278-280
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbingcircuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft- switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

Design of Low-Pass Type Inverter: UWB Band-Pass Filter with Low Spurious Characteristics

  • Cho, Young-Ho;Choi, Moon-Gyu;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • In this paper, we present the design method for a low-pass type inverter, which can effectively suppress the spurious response associated with band-pass filters. The inverter has a length of ${\lambda}/4$ and employs not only a stepped-impedance configuration but also asymmetrical and bending structures in order to improve frequency selectivity and compactness. The inverter is applied as an impedance/admittance inverter to the ultra-wideband (UWB) band-pass filter. The UWB band-pass filter configuration is based on a stub band-pass filter consisting of quarter-wavelength impedance inverters and shunt short-circuited stubs ${\lambda}/4$ in length. The asymmetrical stepped-impedance low-pass type inverter improves not only the spurious responses, but also the return loss characteristics associated with a UWB band-pass filter, while a compact size is maintained. The UWB band-pass filter using the proposed inverters is fabricated and tested. The measured results show excellent attenuation characteristics at out-band frequencies, which exceed 18 dB up to 39 GHz. The insertion loss within the pass-band (from 3.1 to 10.6 GHz) is below 1.7 dB, the return loss is below 10 dB, and the group delay is below 1 ns.

Zero Voltage Soft Switching PWM High-Frequency Inverter with Active Inductor Snubber for Induction Heated Roller in New Type Copy Machine

  • Muraoka S.;Feng Y.L.;Kunimoto H.;Chandhaket S.;Okuno A.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.75-79
    • /
    • 2001
  • This paper presents a novel version of an active voltage clamped ZVS-PWM high frequency inverter using IGBTs for electromagnetic induction eddy current-based rolling drum heating in new generation copy and printing machines in consumer business use. The operating principle of this inverter circuit and unique features are described herein. Its constant frequency duty cycle (asymmetrical PWM) controlled voltage source quasi-resonant soft switching high frequency inverter employing IGBTs is proposed, which is capable of achieving stable and efficient zero voltage soft switching commutation over a widely specified power regulation range from full power to low power. The operating performances in a steady state of this inverter is discussed and evaluated on basis of simulation and experimental results as an induction heated roller in new generation copy machine.

  • PDF

Induction Heating PWM High Frequency Inverter using New Active Auxiliary Resonant Snubber

  • Mun, Sang-Pil;Kim, Chil-Ryong;Lee, Jong-Kurl;Kim, Hong-Sin;Jung, Sang-Hwa;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.40-51
    • /
    • 2008
  • This research presents a new active auxiliary resonant snubber with for induction heating PWM high frequency inverter solving the problem of induction heating PWM high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the active auxiliary resonant snubber with for induction heating PWM high frequency inverter. The inverter circuit which is attempted by the on-off operation of a switch has the effect of reducing the power loss due to soft switching and high frequency switching. This confirms that power regulation is possible on a continuous basis from 0.25[kW] to 2.84[kW] where the duty factor(D) changes from 0.08 to 0.3 under zero current switching which operates by an asymmetrical pulse width modulating control. The power conversion efficiency is 95[%]. Due to these results, the active auxiliary resonant snubber for an induction heating PWM high frequency inverter is considered effective as a source of induction heating.

Full Bridge Resonant Inverter Using Asymmetrical Control with Resonant-frequency Tracking for Ultrasonic Cleaning Applications

  • Jittakort, Jirapong;Sangswang, Anawach;Naetiladdanon, Sumate;Koompai, Chayant;Chudjuarjeen, Saichol
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1150-1159
    • /
    • 2017
  • Flexibility in the power control of ultrasonic transducers has remained a challenge for cleaning applications. This paper introduces a modification of the existing piezoelectric ceramic transducer (PCT) circuit to increase the range of operation through its impedance characteristics. The output power is controlled using the asymmetrical voltage-cancellation (AVC) method. Together with a phase-locked loop control, the switching frequency of the inverter is automatically adjusted to maintain a lagging phase angle under load-parameter variations during the cleaning process. With the proposed modification, the region of the zero-voltage switching (ZVS) operation is extended, which results in a wider range of output power control. A hardware prototype is constructed and the control algorithm is implemented using an STM32F4 microcontroller. Simulation and experimental results are provided to verify the proposed method for a 50-W PCT. The operating frequency and output power ranges under study are 37 - 41 kHz and 15.8 - 50 W, respectively.