• Title/Summary/Keyword: Asymmetric factors

Search Result 159, Processing Time 0.025 seconds

A Study on Core Factors and Application of Asymmetric VR Content (Asymmetric VR 콘텐츠 제작의 핵심 요인과 활용에 관한 연구)

  • Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.5
    • /
    • pp.39-49
    • /
    • 2017
  • In this study, we propose the core factors and application of asymmetric virtual reality(VR) content in which head-mounted display(HMD) user and Non-HMD users can work together in a co-located space that can lead to various experiences and high presence. The core of the proposed asymmetric VR content is that all users are immersed in VR and participate in new experiences by reflecting widely a range of users' participation and environments, regardless of whether or not users wear the HMD. For this purpose, this study defines the role relationships between HMD user and Non-HMD users, the viewpoints provided to users, and the speech communication structure available among users. Based on this, we verified the core factors through the process of producing assistive asymmetric VR content and cooperative asymmetric VR content directly. Finally, we conducted a survey to examine the users' presence and their experience of the proposed asymmetric VR content and to analyze the application method. As a result, it was confirmed that if the purpose of asymmetric VR content and core factors between the two types of users are clearly distinguished and defined, the independent experience presented by the VR content together with perceived presence can provide a satisfactory experience to all users.

Numerical and Experimental Prediction of Asymmetric Deformation Behavior and Its Setup Model in Plate Rolling (후판 압연공정에서 상·하 비대칭 변형거동의 수치적·실험적 예측 및 설정모델에 관한 연구)

  • Byon, Sang-Min;Lee, Young-Seog;Jun, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.124-129
    • /
    • 2011
  • The thick plate produced by rolling process is used as the basic members of a ship structure. In this paper, we present a setup model to control the asymmetric factors causing plate bending in the upper or lower direction during rolling. A series of finite element analysis are conducted to predict the relationship between various asymmetric factors and plate bending. The setup model is developed by regressing the relationship to the linear equations with several non-dimensional parameters. The setup model is verified by a pilot rolling test and applied to actual rolling conditions. Results show that the model is substantial to predict the asymmetric deformation in the plate rolling process.

Prediction of Width-Direction Asymmetric Deformation Behavior and Its Setup Model in Plate Rolling (후판 압연공정에서 폭방향 비대칭 변형거동 예측 및 설정모델에 관한 연구)

  • Byon, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1437-1443
    • /
    • 2011
  • Thick plates produced by the rolling process are used as the basic elements of ship structures. In this paper, we present a setup model for controlling the asymmetric factors causing plate bending in the width direction during plate rolling. A series of three-dimensional finite element analyses is conducted to predict the relationship between various asymmetric factors and plate bending. The setup model is developed by performing regression on the relationship to produce linear equations with several nondimensional parameters. The setup model is verified with a pilot rolling test in which variations in thickness and temperature differences in the width direction exist. The results show that the bending curvatures predicted by the model are in fairly good agreement with the measured results for those asymmetric factors.

Analysis and Control of NPC-3L Inverter Fed Dual Three-Phase PMSM Drives Considering their Asymmetric Factors

  • Chen, Jian;Wang, Zheng;Wang, Yibo;Cheng, Ming
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1500-1511
    • /
    • 2017
  • The purpose of this paper is to study a high-performance control scheme for neutral-point-clamping three-level (NPC-3L) inverter fed dual three-phase permanent magnet synchronous motor (PMSM) drives by considering some asymmetric factors such as the non-identical parameters in phase windings. To implement this, the system model is analyzed for dual three-phase PMSM drives with asymmetric factors based on the vector space decomposition (VSD) principle. Based on the equivalent circuits, PI controllers with feedforward compensation are used in the d-q subspace for regulating torque, where the cut-off frequency of the PI controllers are set at the twice the fundamental frequency for compensating both the additional DC component and the second order component caused by asymmetry. Meanwhile, proportional resonant (PR) controllers are proposed in the x-y subspace for suppressing the possible unbalanced currents in the phase windings. A dual three-phase space vector modulation (DT-SVM) is designed for the drive, and the balancing factor is designed based on the numerical fitting surface for balancing the DC link capacitor voltages. Experimental results are given to demonstrate the validity of the theoretical analysis and the proposed control scheme.

Study on the Case of the Asymmetric War (비대칭전 주요사례 연구)

  • Kim, Sung Woo
    • Convergence Security Journal
    • /
    • v.16 no.6_1
    • /
    • pp.25-32
    • /
    • 2016
  • We can not respond asymmetric warfare effectively. The asymmetric operation is performed in asymmetric methods and means with different characteristics and functions to their enemy. And the character of the asymmetric operation have 'heterogeneity' and 'superiority' in principle. The type of asymmetric strategy is complex and diverse. Since we can classify the type of the asymmetric strategy in many different way and we must study in many ways and aspects. When we study asymmetric war previous cases from modern to ancient era, we can find that the key factors of the victory have superiority of the asymmetric strategy and discriminatory measures. The asymmetry is created when one party has to adapt to the strategic environment. If we want to secure a strategic advantage, we must take a number of case studies and countermeasures for asymmetric warfare.

ASYMMETRIC VORTEX CHARACTERISTICS AT A CONE UNDER SUPERSONIC HIGH ANGLE OF ATTACK FLOW (초음속 고받음각에서의 원뿔형 물체 주위의 비대칭 와류 특성 연구)

  • Park, M.Y.;Noh, K.H.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.8-13
    • /
    • 2008
  • A supersonic viscous flow over a five-degree half-angle cone is studied computationally with three-dimensional Navier-Stokes equations. Steady asymmetric solutions show that the asymmetric flow separation is caused by convective instability. The effects of angle of attacks, Reynolds numbers, and Mach numbers have been investigated and it is found that those factors affect the generation of the side force. The side force has the maximum value at ${\alpha}=22^{\circ}$, while over ${\alpha}=22^{\circ}$, asymmetric vortex becomes transient, which results in the unsteady shedding. At the angle of attack of 22 degrees, the side force increases with Reynolds number and decreases with Mach number. The increase of the side force stops over the critical Reynolds number for the present configuration.

The Stock Price Response of Palm Oil Companies to Industry and Economic Fundamentals

  • ARINTOKO, Arintoko
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.99-110
    • /
    • 2021
  • This study aims to examine empirically the industry and economic fundamental factors that affect the stock prices of the leading palm oil company in Indonesia. The dynamics of stock price are analyzed using the autoregressive distribution lag (ARDL) model both for symmetric and asymmetric effects. The data used in this study are monthly data for the period from 2008:01 to 2020:03. In the long run, the company stock price moves in line with the competitor company stock price at the current time. The palm oil price has a positive effect on the stock price. Meanwhile, inflation negatively affects the stock price in the short run. The estimated equilibrium correction coefficient indicates a reasonably quick correction of the distortion of the stock price equilibrium in monthly dynamics. However, fundamental factors have asymmetric effects, especially the response of stock price when these factors decrease rather than increase in the short run. Stock prices that are responsive to declines in fundamental performance should be of particular concern to both investors and management in their strategic decision making. The results of this study will contribute to the enrichment of literature related to stock prices from the viewpoint of economic analysis on firm-level data.

On the Geometric Equivalence of Asymmetric Factorial Designs

  • Park, Dong-Kwon;Park, Eun-Hye
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.777-786
    • /
    • 2006
  • Two factorial designs with quantitative factors are called geometrically equivalent if the design matrix of one can be transformed into the design matrix of the other by row and column permutations, and reversal of symbol order in one or more columns. Clark and Dean (2001) gave a sufficient and necessary condition (which we call the 'gCD condition') for two symmetric factorial designs with quantitative factors to be geometrically equivalent. This condition is based on the absolute value of the Euclidean(or Hamming) distance between pairs of design points. In this paper we extend the gCD condition to asymmetric designs. In addition, a modified algorithm is applied for checking the equivalence of two designs.

Estimation of active multiple tuned mass dampers for asymmetric structures

  • Li, Chunxiang;Xiong, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.505-530
    • /
    • 2008
  • This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation

  • Choi, Ji Won;Lim, Jun
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.524-529
    • /
    • 2016
  • Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.