• Title/Summary/Keyword: Artificial Intelligent Security

Search Result 86, Processing Time 0.025 seconds

Technology of Lessons Learned Analysis using Artificial intelligence: Focused on the 'L2-OODA Ensemble Algorithm' (인공지능형 전훈분석기술: 'L2-OODA 앙상블 알고리즘'을 중심으로)

  • Yang, Seong-sil;Shin, Jin
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.67-79
    • /
    • 2021
  • Lessons Learned(LL) is a military term defined as all activities that promote future development by finding problems and need improvement in education and reality in the field of warfare development. In this paper, we focus on presenting actual examples and applying AI analysis inference techniques to solve revealed problems in promoting LL activities, such as long-term analysis, budget problems, and necessary expertise. AI legal advice services using cognitive computing-related technologies that have already been practical and in use, were judged to be the best examples to solve the problems of LL. This paper presents intelligent LL inference techniques, which utilize AI. To this end, we want to explore theoretical backgrounds such as LL analysis definitions and examples, evolution of AI into Machine Learning, cognitive computing, and apply it to new technologies in the defense sector using the newly proposed L2-OODA ensemble algorithm to contribute to implementing existing power improvement and optimization.

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.

A study on the improvement of artificial intelligence-based Parking control system to prevent vehicle access with fake license plates (위조번호판 부착 차량 출입 방지를 위한 인공지능 기반의 주차관제시스템 개선 방안)

  • Jang, Sungmin;Iee, Jeongwoo;Park, Jonghyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.57-74
    • /
    • 2022
  • Recently, artificial intelligence parking control systems have increased the recognition rate of vehicle license plates using deep learning, but there is a problem that they cannot determine vehicles with fake license plates. Despite these security problems, several institutions have been using the existing system so far. For example, in an experiment using a counterfeit license plate, there are cases of successful entry into major government agencies. This paper proposes an improved system over the existing artificial intelligence parking control system to prevent vehicles with such fake license plates from entering. The proposed method is to use the degree of matching of the front feature points of the vehicle as a passing criterion using the ORB algorithm that extracts information on feature points characterized by an image, just as the existing system uses the matching of vehicle license plates as a passing criterion. In addition, a procedure for checking whether a vehicle exists inside was included in the proposed system to prevent the entry of the same type of vehicle with a fake license plate. As a result of the experiment, it showed the improved performance in identifying vehicles with fake license plates compared to the existing system. These results confirmed that the methods proposed in this paper could be applied to the existing parking control system while taking the flow of the original artificial intelligence parking control system to prevent vehicles with fake license plates from entering.

Behavior Pattern Modeling based Game Bot detection (행동 패턴 모델을 이용한 게임 봇 검출 방법)

  • Park, Sang-Hyun;Jung, Hye-Wuk;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.422-427
    • /
    • 2010
  • Korean Game industry, especially MMORPG(Massively Multiplayer Online Game) has been rapidly expanding in these days. But As game industry is growing, lots of online game security incidents have also been increasing and getting prevailing. One of the most critical security incidents is 'Game Bots', which are programs to play MMORPG instead of human players. If player let the game bots play for them, they can get a lot of benefic game elements (experience points, items, etc.) without any effort, and it is considered unfair to other players. Plenty of game companies try to prevent bots, but it does not work well. In this paper, we propose a behavior pattern model for detecting bots. We analyzed behaviors of human players as well as bots and identified six game features to build the model to differentiate game bots from human players. Based on these features, we made a Naive Bayesian classifier to reasoning the game bot or not. To evaluated our method, we used 10 game bot data and 6 human Player data. As a result, we classify Game bot and human player with 88% accuracy.

A Study Covering the Comparative Analysis of Educational Systems in Major Countries for Regular Cybersecurity Education (사이버보안 정규교육화를 위한 주요국 교육체계 비교분석 연구)

  • YOO, Jiyeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.397-405
    • /
    • 2021
  • With the recent phenomenon of the Intelligence Information Society, the cyber security paradigm has begun to change. In particular, the increase of the interconnectedness of the hyperlinked society has extended the scope of damage that can be caused by cyber threats to the real world. In addition to that, it can also be a risk to any given individual who could accompany a crisis that has to do with public safety or national security. Adolescents who are digital natives are more likely to be exposed to cyber threats, which is mainly due to the fact that they are significantly more involved in cyber activities and they also possess insufficient security comprehension and safety awareness. Therefore, it is necessary to strengthen cyber security capabilities of every young individual, so that they can effectively protect themselves against cyber threats and better manage their cyber activities. It examines the changes of the security paradigm and the necessity for cyber security education, which is in direct accordance to the characteristics of a connected society that further suggests directions and a basic system of cyber security education, through a detailed analysis of the current state of Domestic and Overseas Cyber Security Education. The purpose of this study was to define cybersecurity competencies that are necessary within an intelligent information society, and to propose a regular curriculum for strengthening cybersecurity competencies, through the comparison and meticulous analysis of both domestic and overseas educational systems that are pertinent to cybersecurity competencies. Accordingly, a cybersecurity competency system was constructed, by reflecting C3-Matrix, which is a cyber competency system model of digital citizens. The cybersecurity competency system consists of cyber ethics awareness, cyber ethics behavior, cyber security and cyber safety. In addition to this, based on the basic framework of the cybersecurity competency system, the relevant education that is currently being implemented in the United States, Australia, Japan and Korea were all compared and analyzed. From the insight gained through the analysis, the domestic curriculum was finally presented. The main objective of this new unified understanding, was to create a comprehensive and effective cyber security competency curriculum.

The Improvement Plan for Personal Information Protection for Artificial Intelligence(AI) Service in South Korea (우리나라의 인공지능(AI)서비스를 위한 개인정보보호 개선방안)

  • Shin, Young-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.20-33
    • /
    • 2021
  • This study is to suggest improvements of personal information protection in South Korea, according to requiring the safety of process and protection of personal information. Accordingly, based on data collection and analysis through literature research, this study derived the issues and suitable standards of personal information for major artificial intelligence services. In addition, this cases studies were reviewed, focusing on the legal compliance and porcessing compliance for personal information proection in major countries. And it suggested the improvement plan applied in South Korea. As the results, in legal compliance, it is required reorganization of related laws, responsibility and compliance to develop and provide AI, and operation of risk management for personal information protection laws in AI services. In terms of processing compliance, first, in pre-processing and refining, it is necessary to standardize data set reference models, control data set quality, and voluntarily label AI applications. Second, in development and utilization of algorithm, it is need to establish and apply a clear regulation of the algorithm. As such, South Korea should apply suitable improvement tasks for personal information protection of safe AI service.

Multi-Category Sentiment Analysis for Social Opinion Related to Artificial Intelligence on Social Media (소셜 미디어 상에서의 인공지능 관련 사회적 여론에 대한 다 범주 감성 분석)

  • Lee, Sang Won;Choi, Chang Wook;Kim, Dong Sung;Yeo, Woon Young;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.51-66
    • /
    • 2018
  • As AI (Artificial Intelligence) technologies have been swiftly evolved, a lot of products and services are under development in various fields for better users' experience. On this technology advance, negative effects of AI technologies also have been discussed actively while there exists positive expectation on them at the same time. For instance, many social issues such as trolley dilemma and system security issues are being debated, whereas autonomous vehicles based on artificial intelligence have had attention in terms of stability increase. Therefore, it needs to check and analyse major social issues on artificial intelligence for their development and societal acceptance. In this paper, multi-categorical sentiment analysis is conducted over online public opinion on artificial intelligence after identifying the trending topics related to artificial intelligence for two years from January 2016 to December 2017, which include the event, match between Lee Sedol and AlphaGo. Using the largest web portal in South Korea, online news, news headlines and news comments were crawled. Considering the importance of trending topics, online public opinion was analysed into seven multiple sentimental categories comprised of anger, dislike, fear, happiness, neutrality, sadness, and surprise by topics, not only two simple positive or negative sentiment. As a result, it was found that the top sentiment is "happiness" in most events and yet sentiments on each keyword are different. In addition, when the research period was divided into four periods, the first half of 2016, the second half of the year, the first half of 2017, and the second half of the year, it is confirmed that the sentiment of 'anger' decreases as goes by time. Based on the results of this analysis, it is possible to grasp various topics and trends currently discussed on artificial intelligence, and it can be used to prepare countermeasures. We hope that we can improve to measure public opinion more precisely in the future by integrating empathy level of news comments.

Impulse Noise Removal Filter using Nearest Effective Pixel Search (최근접 유효 화소의 탐색을 사용한 임펄스 잡음 제거 필터)

  • Chung, Young-Su;Jung, Hwae-Sung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.139-141
    • /
    • 2022
  • As interest in digital video media and intelligent systems increases rapidly, technologies using video information are being combined and used in various fields such as security and artificial intelligence. Impulse noise generated during digital image processing degrades the image quality of the image and reduces the reliability of information, so it is necessary to remove it through a filter. There are SMF, AWMF, and MDBUTMF as well-known antecedent methods, but they all have limitations in achieving seamless filtering in environments with large loss of information on valid pixels due to problems with the algorithm itself. Therefore, this paper designs a median filter algorithm that applies weights reflecting the reliability of the information by searching for the nearest effective pixels present within the mask. For performance evaluation, this algorithm and the preceding algorithm were compared and analyzed using PSNR and enlarged images.

  • PDF

A Study on the Development of Embedded Serial Multi-modal Biometrics Recognition System (임베디드 직렬 다중 생체 인식 시스템 개발에 관한 연구)

  • Kim, Joeng-Hoon;Kwon, Soon-Ryang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • The recent fingerprint recognition system has unstable factors, such as copy of fingerprint patterns and hacking of fingerprint feature point, which mali cause significant system error. Thus, in this research, we used the fingerprint as the main recognition device and then implemented the multi-biometric recognition system in serial using the speech recognition which has been widely used recently. As a multi-biometric recognition system, once the speech is successfully recognized, the fingerprint recognition process is run. In addition, speaker-dependent DTW(Dynamic Time Warping) algorithm is used among existing speech recognition algorithms (VQ, DTW, HMM, NN) for effective real-time process while KSOM (Kohonen Self-Organizing feature Map) algorithm, which is the artificial intelligence method, is applied for the fingerprint recognition system because of its calculation amount. The experiment of multi-biometric recognition system implemented in this research showed 2 to $7\%$ lower FRR (False Rejection Ratio) than single recognition systems using each fingerprints or voice, but zero FAR (False Acceptance Ratio), which is the most important factor in the recognition system. Moreover, there is almost no difference in the recognition time(average 1.5 seconds) comparing with other existing single biometric recognition systems; therefore, it is proved that the multi-biometric recognition system implemented is more efficient security system than single recognition systems based on various experiments.

The Improvement Plan for Indicator System of Personal Information Management Level Diagnosis in the Era of the 4th Industrial Revolution: Focusing on Application of Personal Information Protection Standards linked to specific IT technologies (제4차 산업시대의 개인정보 관리수준 진단지표체계 개선방안: 특정 IT기술연계 개인정보보호기준 적용을 중심으로)

  • Shin, Young-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.1-13
    • /
    • 2021
  • This study tried to suggest ways to improve the indicator system to strengthen the personal information protection. For this purpose, the components of indicator system are derived through domestic and foreign literature, and it was selected as main the diagnostic indicators through FGI/Delphi analysis for personal information protection experts and a survey for personal information protection officers of public institutions. As like this, this study was intended to derive an inspection standard that can be reflected as a separate index system for personal information protection, by classifying the specific IT technologies of the 4th industrial revolution, such as big data, cloud, Internet of Things, and artificial intelligence. As a result, from the planning and design stage of specific technologies, the check items for applying the PbD principle, pseudonymous information processing and de-identification measures were selected as 2 common indicators. And the checklists were consisted 2 items related Big data, 5 items related Cloud service, 5 items related IoT, and 4 items related AI. Accordingly, this study expects to be an institutional device to respond to new technological changes for the continuous development of the personal information management level diagnosis system in the future.