• Title/Summary/Keyword: Artificial Intelligence Prediction Model

Search Result 423, Processing Time 0.026 seconds

지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로 (A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model)

  • 김예찬;최광은;정두희
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.217-242
    • /
    • 2022
  • AI 기술이 결합된 지능형 제품은 기술적 차별화를 실현하며 시장 경쟁력을 높일 수 있는 잠재성을 지닌다. 하지만 시장 수용도를 극대화 할 수 있는 AI 기반의 신제품 개발 방법론은 부재하다. 본 연구는 AI 기반의 지능형 제품 개발에 대한 방법론으로서 KANO-QFD 통합 모델을 제안한다. 실증적인 분석을 위한 구체적 사례로 탈모 예측 및 치료 기기에 대한 소비자 요구조건(Customer Requirements)의 유형을 분류하고, 이를 구현하기 위한 기술적 요구사항(Engineering Characteristics)의 상대적 중요도 및 우선순위를 도출하여 지능형 메디컬 신제품 개발의 방향을 제시하였다. 소비자 130명을 대상으로 실시한 설문조사 분석 결과, KANO 카테고리 중 매력적 품질(Attractive Quality) 요소로 미래 탈모 진행 상황에 대한 정확한 예측, 미래 탈모 모습 및 치료 후 개선된 미래 모습을 실물화하여 스마트폰으로 보고, 세련된 디자인, 레이저와 LED 빛 복합 에너지를 이용한 치료 등이 도출되었다. QFD의 품질의 집(House of Quality)을 기반으로 분석한 결과, 탈모 진단 및 예측을 위한 학습 데이터, 두피 스캔용 Micro 카메라 해상도, 탈모 유형 분류 모델, 맞춤화를 위한 개인별 계정 관리, 탈모 진행상황 진단 모델 순으로 상대적 중요도 및 우선순위가 도출되었다. 본 연구는 기존에 선행되지 않았던 AI 기반의 지능형 메디컬 제품 개발에 대한 방향을 제시하였다는 면에서 의의를 지닌다.

Practical method to improve usage efficiency of bike-sharing systems

  • Lee, Chun-Hee;Lee, Jeong-Woo;Jung, YungJoon
    • ETRI Journal
    • /
    • 제44권2호
    • /
    • pp.244-259
    • /
    • 2022
  • Bicycle- or bike-sharing systems (BSSs) have received increasing attention as a secondary transportation mode due to their advantages, for example, accessibility, prevention of air pollution, and health promotion. However, in BSSs, due to bias in bike demands, the bike rebalancing problem should be solved. Various methods have been proposed to solve this problem; however, it is difficult to apply such methods to small cities because bike demand is sparse, and there are many practical issues to solve. Thus, we propose a demand prediction model using multiple classifiers, time grouping, categorization, weather analysis, and station correlation information. In addition, we analyze real-world relocation data by relocation managers and propose a relocation algorithm based on the analytical results to solve the bike rebalancing problem. The proposed system is compared experimentally with the results obtained by the real relocation managers.

Savitzky-Golay 필터와 미분을 활용한 LSTM 기반 지하수 수위 예측 모델의 성능 비교 (Performance Comparison of LSTM-Based Groundwater Level Prediction Model Using Savitzky-Golay Filter and Differential Method )

  • 송근산;송영진
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.84-89
    • /
    • 2023
  • In water resource management, data prediction is performed using artificial intelligence, and companies, governments, and institutions continue to attempt to efficiently manage resources through this. LSTM is a model specialized for processing time series data, which can identify data patterns that change over time and has been attempted to predict groundwater level data. However, groundwater level data can cause sen-sor errors, missing values, or outliers, and these problems can degrade the performance of the LSTM model, and there is a need to improve data quality by processing them in the pretreatment stage. Therefore, in pre-dicting groundwater data, we will compare the LSTM model with the MSE and the model after normaliza-tion through distribution, and discuss the important process of analysis and data preprocessing according to the comparison results and changes in the results.

  • PDF

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

인공신경망 기반 공기정화기 설치위치에 따른 공기교환성능 예측 (Prediction of Air Exchange Performance of an Air Purifier by Installation Location using Artificial Neural Network)

  • 김나경;강동희;강현욱
    • 한국가시화정보학회지
    • /
    • 제20권2호
    • /
    • pp.21-27
    • /
    • 2022
  • Air purifiers can be placed where the air cleaning is required, making it easy to manage indoor air quality. The position of the air purifier affects the indoor airflow pattern, resulting in different air cleaning efficiency. Many efforts and strategies have been examined through numerical simulations and experiments to find the proper location of the air purifier, but problems still remain due to the various geometrical indoor spaces and arrangements. Herein, we develop an artificial intelligence model to predict the performance of an air purifier depending on the installation location. To obtain the training data, numerical simulations were performed on the different locations of the air purifiers and airflow patterns. The trained artificial intelligence model predicted the air exchange performance depending on the installation location of the air purifier with a prediction accuracy of 92%.

Artificial-Neural-Network-based Night Crime Prediction Model Considering Environmental Factors

  • Lee, Juwon;Jeong, Yongwook;Jung, Sungwon
    • Architectural research
    • /
    • 제24권1호
    • /
    • pp.1-11
    • /
    • 2022
  • As the occurrence of a crime is dependent on different factors, their correlations are beyond the ordinary cognitive range. Owing to this limitation, systems face difficulty in correlating various factors, thereby requiring the assistance of artificial intelligence (AI) to overcome such limitations. Therefore, AI has become indispensable for crime prediction. Crimes can cause severe and irrevocable damage to a society. Recently, big data has been introduced for developing highly accurate models for crime prediction. Prediction of night crimes should be given significant consideration, because crimes primarily occur during nights, when the spatiotemporal characteristics become vulnerable to crimes. Many environmental factors that influence crime rate are applied for crime prediction, and their influence on crime rate may differ based on temporal characteristics and the nature of crime. This study aims to identify the environmental factors that influence sex and theft crimes occurring at night and proposes an artificial neural network (ANN) model to predict sex and theft crimes at night in random areas. The crime data of A district in Seoul for 12 years (2004-2015) was used, and environmental factors that influence sex and theft crimes were derived through multiple regression analysis. Two types of crime prediction models were developed: Type A using all environmental factors as input data; Type B with only the significant factors (obtained from regression analysis) as input data. The Type B model exhibited a greater accuracy than Type A, by 3.26 and 9.47 % higher for theft and sex crimes, respectively.

[Reivew]Prediction of Cervical Cancer Risk from Taking Hormone Contraceptivese

  • Su jeong RU;Kyung-A KIM;Myung-Ae CHUNG;Min Soo KANG
    • 한국인공지능학회지
    • /
    • 제12권1호
    • /
    • pp.25-29
    • /
    • 2024
  • In this study, research was conducted to predict the probability of cervical cancer occurrence associated with the use of hormonal contraceptives. Cervical cancer is influenced by various environmental factors; however, the human papillomavirus (HPV) is detected in 99% of cases, making it the primary attributed cause. Additionally, although cervical cancer ranks 10th in overall female cancer incidence, it is nearly 100% preventable among known cancers. Early-stage cervical cancer typically presents no symptoms but can be detected early through regular screening. Therefore, routine tests, including cytology, should be conducted annually, as early detection significantly improves the chances of successful treatment. Thus, we employed artificial intelligence technology to forecast the likelihood of developing cervical cancer. We utilized the logistic regression algorithm, a predictive model, through Microsoft Azure. The classification model yielded an accuracy of 80.8%, a precision of 80.2%, a recall rate of 99.0%, and an F1 score of 88.6%. These results indicate that the use of hormonal contraceptives is associated with an increased risk of cervical cancer. Further development of the artificial intelligence program, as studied here, holds promise for reducing mortality rates attributable to cervical cancer.

하천 범람 예측을 위한 인공지능 수위 예측 시스템 설계 (Design of Artificial Intelligence Water Level Prediction System for Prediction of River Flood)

  • 박세현;김현재
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.198-203
    • /
    • 2020
  • 본 논문에서는 소규모 강의 범람 예측을 위한 인공 수위 예측 시스템을 제안한다. 강의 수위 예측은 홍수 피해를 줄일 수 있는 대책이 될 수 있다. 그러나 하천 범람에 영향을 미치는 강 또는 강우의 고유 특성으로 인해 범람 모델을 구축하기가 어렵다. 일반적으로 하류 수위는 상류의 인접한 수위에 영향을 받는다. 따라서 본 연구에서는 측정 지점에서 수위를 예측하기 위해 두 개의 상류 측정 지점의 수위를 순환신경망(LSTM)을 사용하여 인공 지능 모델을 구축했다. 제안 된 인공 지능 시스템은 수위 측정기를 설계하고 Nodejs를 사용하여 서버를 구축했다. 제안 된 신경망 하드웨어 시스템은 실제 강에서 6시간마다 수위를 잘 예측함을 알 수 있었다.

Use of automated artificial intelligence to predict the need for orthodontic extractions

  • Real, Alberto Del;Real, Octavio Del;Sardina, Sebastian;Oyonarte, Rodrigo
    • 대한치과교정학회지
    • /
    • 제52권2호
    • /
    • pp.102-111
    • /
    • 2022
  • Objective: To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records. Methods: The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions. Results: By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used. Conclusions: The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.