• Title/Summary/Keyword: Artificial Intelligence Algorithms

Search Result 518, Processing Time 0.041 seconds

Artificial Intelligence for Clinical Research in Voice Disease (후두음성 질환에 대한 인공지능 연구)

  • Jungirl, Seok;Tack-Kyun, Kwon
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.33 no.3
    • /
    • pp.142-155
    • /
    • 2022
  • Diagnosis using voice is non-invasive and can be implemented through various voice recording devices; therefore, it can be used as a screening or diagnostic assistant tool for laryngeal voice disease to help clinicians. The development of artificial intelligence algorithms, such as machine learning, led by the latest deep learning technology, began with a binary classification that distinguishes normal and pathological voices; consequently, it has contributed in improving the accuracy of multi-classification to classify various types of pathological voices. However, no conclusions that can be applied in the clinical field have yet been achieved. Most studies on pathological speech classification using speech have used the continuous short vowel /ah/, which is relatively easier than using continuous or running speech. However, continuous speech has the potential to derive more accurate results as additional information can be obtained from the change in the voice signal over time. In this review, explanations of terms related to artificial intelligence research, and the latest trends in machine learning and deep learning algorithms are reviewed; furthermore, the latest research results and limitations are introduced to provide future directions for researchers.

Resume Classification System using Natural Language Processing & Machine Learning Techniques

  • Irfan Ali;Nimra;Ghulam Mujtaba;Zahid Hussain Khand;Zafar Ali;Sajid Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.108-117
    • /
    • 2024
  • The selection and recommendation of a suitable job applicant from the pool of thousands of applications are often daunting jobs for an employer. The recommendation and selection process significantly increases the workload of the concerned department of an employer. Thus, Resume Classification System using the Natural Language Processing (NLP) and Machine Learning (ML) techniques could automate this tedious process and ease the job of an employer. Moreover, the automation of this process can significantly expedite and transparent the applicants' selection process with mere human involvement. Nevertheless, various Machine Learning approaches have been proposed to develop Resume Classification Systems. However, this study presents an automated NLP and ML-based system that classifies the Resumes according to job categories with performance guarantees. This study employs various ML algorithms and NLP techniques to measure the accuracy of Resume Classification Systems and proposes a solution with better accuracy and reliability in different settings. To demonstrate the significance of NLP & ML techniques for processing & classification of Resumes, the extracted features were tested on nine machine learning models Support Vector Machine - SVM (Linear, SGD, SVC & NuSVC), Naïve Bayes (Bernoulli, Multinomial & Gaussian), K-Nearest Neighbor (KNN) and Logistic Regression (LR). The Term-Frequency Inverse Document (TF-IDF) feature representation scheme proven suitable for Resume Classification Task. The developed models were evaluated using F-ScoreM, RecallM, PrecissionM, and overall Accuracy. The experimental results indicate that using the One-Vs-Rest-Classification strategy for this multi-class Resume Classification task, the SVM class of Machine Learning algorithms performed better on the study dataset with over 96% overall accuracy. The promising results suggest that NLP & ML techniques employed in this study could be used for the Resume Classification task.

The Paradigm Shift of Intelligence Information Society: Law and Policy (지능정보사회에 대한 규범적 논의와 법정책적 대응)

  • Kim, Yun-Myung
    • Informatization Policy
    • /
    • v.23 no.4
    • /
    • pp.24-37
    • /
    • 2016
  • An Intelligent information society means intelligent superconducting society that goes beyond information society where information is centered. Now that artificial intelligence is specifically discussed, it is time to start discussing the laws and systems for intelligent information society, where artificial intelligence plays a key role. At some point it may be too late to cope with singularity. Of course, it is not easy to predict how artificial intelligence will change our society. However, there are concerns on what kind of relationship should humans build with AI in the intelligent information society where algorithms rule the world or at least support decision making of humans. What is obvious is that humans dominating AI or ruling out AI will not be the answer. Discussions for legal framework to respond to the AI-based intelligent information society needs to be achieved to a level that replaces the current human-based legal framework with AI. This is because legal improvement caused by the paradigm shift to the intelligent information society may assume emergence of new players-AI, robots, and objects-and even their subjectivation.

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

A Case Study on the Establishment of an Equity Investment Optimization Model based on FinTech: For Institutional Investors (핀테크 기반 주식투자 최적화 모델 구축 사례 연구 : 기관투자자 대상)

  • Kim, Hong Gon;Kim, Sodam;Kim, Hee-Wooong
    • Knowledge Management Research
    • /
    • v.19 no.1
    • /
    • pp.97-118
    • /
    • 2018
  • The finance-investment industry is currently focusing on research related to artificial intelligence and big data, moving beyond conventional theories of financial engineering. However, the case of equity optimization portfolio by using an artificial intelligence, big data, and its performance is rarely realized in practice. Thus, the purpose of this study is to propose process improvements in equity selection, information analysis, and portfolio composition, and lastly an improvement in portfolio returns, with the case of an equity optimization model based on quantitative research by an artificial intelligence. This paper is an empirical study of the portfolio based on an artificial intelligence technology of "D" asset management, which is the largest domestic active-quant-fiduciary management in accordance with the purpose of this paper. This study will apply artificial intelligence to finance, analyzing financial and demand-supply information and automating factor-selection and weight of equity through machine learning based on the artificial neural network. Also, the learning the process for the composition of portfolio optimization and its performance by applying genetic algorithms to models will be documented. This study posits a model that the asset management industry can achieve, with continuous and stable excess performance, low costs and high efficiency in the process of investment.

Application of Artificial Intelligence for the Management of Oral Diseases

  • Lee, Yeon-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.2
    • /
    • pp.107-108
    • /
    • 2022
  • Artificial intelligence (AI) refers to the use of machines to mimic intelligent human behavior. It involves interactions with humans in clinical settings, and augmented intelligence is considered as a cognitive extension of AI. The importance of AI in healthcare and medicine has been emphasized in recent studies. Machine learning models, such as genetic algorithms, artificial neural networks (ANNs), and fuzzy logic, can learn and examine data to execute various functions. Among them, ANN is the most popular model for diagnosis based on image data. AI is rapidly becoming an adjunct to healthcare professionals and is expected to be human-independent in the near future. The introduction of AI to the diagnosis and treatment of oral diseases worldwide remains in the preliminary stage. AI-based or assisted diagnosis and decision-making will increase the accuracy of the diagnosis and render treatment more precise and personalized. Therefore, dental professionals must actively initiate and lead the development of AI, even if they are unfamiliar with it.

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.

Data Mining and Artificial Intelligence Approach for Intelligent Transportation System (ITS를 위한 데이터 마이닝과 인공지능 기법 연구)

  • Sam, Kaung Myat;Rhee, Kyung-Hyune
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.894-897
    • /
    • 2014
  • The speed of processes and the extremely large amount of data to be used in Intelligence Transportations System (ITS) cannot be handling by humans without considerable automation. However, it is difficult to develop software with conventional fixed algorithms (hard-wired logic on decision making level) for effectively manipulate dynamically evolving real time transportation environment. This situation can be resolved by applying methods of artificial intelligence and data mining that provide flexibility and learning capability. This paper presents a brief introduction of data mining and artificial intelligence (AI) applications in Intelligence Transportation System (ITS), analyzing the prospects of enhancing the capabilities by means of knowledge discovery and accumulating intelligence to support in decision making.

Comparison of Reinforcement Learning Algorithms used in Game AI (게임 인공지능에 사용되는 강화학습 알고리즘 비교)

  • Kim, Deokhyung;Jung, Hyunjun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.693-696
    • /
    • 2021
  • There are various algorithms in reinforcement learning, and the algorithm used differs depending on the field. Even in games, specific algorithms are used when developing AI (artificial intelligence) using reinforcement learning. Different algorithms have different learning methods, so artificial intelligence is created differently. Therefore, the developer has to choose the appropriate algorithm to implement the AI for the purpose. To do that, the developer needs to know the algorithm's learning method and which algorithms are effective for which AI. Therefore, this paper compares the learning methods of three algorithms, SAC, PPO, and POCA, which are algorithms used to implement game AI. These algorithms are practical to apply to which types of AI implementations.

  • PDF