• Title/Summary/Keyword: Array-Type MEMS Resonator

Search Result 5, Processing Time 0.017 seconds

Model Order Reduction Using Moment-Matching Method Based on Krylov Subspace and Its Application to FRF Calculation for Array-Type MEMS Resonators (Krylov 부공간에 근거한 모멘트일치법을 이용한 모델차수축소법 및 배열형 MEMS 공진기 주파수응답함수 계산에의 응용)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.436-441
    • /
    • 2008
  • One of important factors in designing array-type MEMS resonators is obtaining a desired frequency response function (FRF) within a specific range. In this paper Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented to calculate the FRF of array-type resonators. By matching moments at a frequency around a specific range of the array-type resonators, required FRFs can be efficiently calculated with significantly reduced systems regardless of their operating frequencies. In addition, because of the characteristics of moment-matching method, a minimal order of reduced system with a specified accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations.

  • PDF

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.840-845
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure. For the mathematical convenience, the MEMS resonator is first modeled as a multi pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

  • PDF

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.931-938
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure For the mathematical convenience, the MEMS resonator is first modeled as a multi-pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method (크리로프 부공간법에 근거한 모델차수축소기법을 통한 배열형 MEMS 공진기의 주파수응답해석)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.878-885
    • /
    • 2009
  • One of important factors in designing MEMS resonators for RF filters is obtaining a desired frequency response function (FRF) within a specific frequency range of interest. Because various array-type MEMS resonators have been recently introduced to improve the filter characteristics such as bandwidth, pass-band, and shape factor, the degrees of freedom (DOF) of finite elements for their FRF calculation dramatically increases and therefore raises computational difficulties. In this paper the Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented as a numerical solution to perform the frequency response analyses of those array-type MEMS resonators in an efficient way. By matching moments at a frequency around the specific operation range of the array-type resonators, the required FRF can be efficiently calculated regardless of their operating frequency from significantly reduced systems. In addition, because of the characteristics of the moment-matching method, a minimal order of reduced system with a prearranged accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations. We also found out that the presented method could obtain the FRF of a $6\times6$ array-type resonator within a seventieth of the computational time necessary for the direct method and in addition FRF calculation by the mode superposition method could not even be completed because of a data overflow with a half after calculation of 9,722 eigenmodes.

Direct Design Sensitivity Analysis of Frequency Response Function Using Krylov Subspace Based Model Order Reduction (Krylov 부공간 모델차수축소법을 이용한 주파수응답함수의 직접 설계민감도 해석)

  • Han, Jeong-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • In this paper a frequency response analysis using Krylov subspace-based model reduction and its design sensitivity analysis with respect to design variables are presented. Since the frequency response and its design sensitivity information are necessary for a gradient-based optimization, problems of high computational cost and resource may occur in the case that frequency response of a large sized finite element model is involved in the optimization iterations. In the suggested method model order reduction of finite element models are used to calculate both frequency response and frequency response sensitivity, therefore one can maximize the speed of numerical computation for the frequency response and its design sensitivity. As numerical examples, a semi-monocoque shell and an array-type $4{\times}4$ MEMS resonator are adopted to show the accuracy and efficiency of the suggested approach in calculating the FRF and its design sensitivity. The frequency response sensitivity through the model reduction shows a great time reduction in numerical computation and a good agreement with that from the initial full finite element model.