• Title/Summary/Keyword: Armchair

Search Result 64, Processing Time 0.018 seconds

C$_2H_2$ chemisorption for characterization of carbon black active sites (카본블랙 활성점 연구를 위한 아세틸렌 화학흡착)

  • Lee, Sang-Yup;Kwak, Jung-Hun;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.80-83
    • /
    • 2007
  • In order to characterize the catalytically active sites on carbon black, acetylene chemisorption had been examined recently at 773 and 873 K by using a pulse technique. As the inject ion was repeated at 773 K, the adsorbed amount gradually decreased and eventually the adsorption did not occur any more. At 873 K a constant amount of $C_2H_2$ was consumed repeatedly after several injections. Good linear relationships were obtained between the methane decomposition rate at 1123 or 1173 K and the cumulative acetylene adsorption at 773 K or the constant acetylene consumption at 873 K. Reasonable models for the associative acetylene chemisorption at 773 K and the constant acetylene consumption at 873 K on the armchair face at the edges of graphene layers were proposed. The constant consumpt ion may be explained by the "$C_2H_2$-addition-hydrogen- abstract ion (CAHA)" mechanism.

  • PDF

Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes

  • Nikkar, Abed;Rouhi, Saeed;Ansari, Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.329-337
    • /
    • 2017
  • This study concerns the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes using the finite element method. The beam elements are used to model the carbon-carbon and silicon-carbon bonds. Besides, spring elements are employed to simulate the van der Waals interactions between walls. The effects of nanotube arrangement, number of walls, geometrical parameters and boundary conditions on the frequencies of nested silicon-carbide and carbon nanotubes are investigated. It is shown that the double-walled nanotubes have larger frequencies than triple-walled nanotubes. Besides, replacing silicon carbide layers with carbon layers leads to increasing the frequencies of nested silicon-carbide and carbon nanotubes. Comparing the first ten mode shapes of nested nanotubes, it is observed that the mode shapes of armchair and zigzag nanotubes are almost the same.

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.

Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model

  • Dihaj, Ahmed;Zidour, Mohamed;Meradjah, Mustapha;Rakrak, Kaddour;Heireche, Houari;Chemi, Awda
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.335-342
    • /
    • 2018
  • The transverse free vibration of chiral double-walled carbon nanotube (DWCNTs) embedded in elastic medium is modeled by the non-local elasticity theory and Euler Bernoulli beam model. The governing equations are derived and the solutions of frequency are obtained. According to this study, the vibrational mode number, the small-scale coefficient, the Winkler parameter and chirality of double-walled carbon nanotube on the frequency ratio (xN) of the (DWCNTs) are studied and discussed. The new features of the vibration behavior of (DWCNTs) embedded in an elastic medium and the present solutions can be used for the static and dynamic analyses of double-walled carbon nanotubes.

Molecular Dynamics Study on the Behavior of a Carbon Nanotube (분자동역학을 이용한 탄소나노튜브의 거동 연구)

  • Huh, J.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.348-351
    • /
    • 2007
  • Simulations of the buckling behavior of a single wall carbon nanotube(SWCNT) was carried out using molecular dynamics simulation. Molecular dynamics simulations were done with 1fs of time step. Tersoff's potential function was used as the interatomic potential function since it has been proved to be reliable to describe the C-C bonds in carbon nanotubes. Compressive force was applied by moving the top end of the nanotube at a constant velocity. Buckling behavior under compressive load was observed for (15,15) armchair SWCNTs with 2nm of diameter and 24.9nm of length. Buckling load and critical strain is obtained from the MD simulation. Deformation occurred on the top region of the CNT because of fast downward velocity.

  • PDF

The Electronic Structure of Carbon Nanotubes with Finite Length : Tight Binding Theory

  • Moon, Won-Ha;Kim, Won-Woo;Hwang, Ho-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • The electronic properties of Carbon Nanotube(CNT) are currently the focus of considerable interest. In this paper, the electronic properties of finite length effect in CNT for the carbon nano-scale device is presented. To Calculate the electronic properties of CNT, Empirical potential method (the extended Brenner potential for C-Si-H) for carbon and Tight Binding molecular dynamic (TBMD) simulation are used. As a result of study, we have known that the value of the band gap decreases with increasing the length of the tube. The energy band gap of (6,6) armchair CNT have the ranges between 0.3 eV and 2.5 eV. Also, our results are in agreements with the result of the other computational techniques.

계산과학을 통한 MoSe2 물분해 광촉매 성질 연구

  • Gang, Seong-U
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.273-276
    • /
    • 2016
  • 최근 single-layer $MoSe_2$와 같은 2차원의 TMD 화합물들이 물분해 광촉매로서 각광받고 있다. TMD 화합물 중 single-layer $MoSe_2$는 수소 발생 반응을 일으킬 수 있으나 산소 발생 반응은 일으킬 수 없어 산화 반응을 진행시킬 추가적인 전극이 필요하다. 이 연구에서는 strain과 doping을 통해 valence band를 아래로 이동시켜 $MoSe_2$를 더 좋은 물분해 광촉매로 변화시키는 방법을 모색하였다. 먼저 Armchair, zigzag, biaxial isotropic, z-axis direction으로 strain을 걸어줄 때 전자구조의 변화를 관찰하였다. z-axis 방향으로 -2.5% strain을 걸어주었을 때 VBM이 0.07eV만큼 감소하였다. 또한 Mo를 Nb로 치환하고 Se를 P, As로 치환한 다음 전자구조를 관찰하였다. Nb와 doping의 경우 VBM이 감소함을 확인하였으며 As doping의 경우 산화반응이 일어날 수 있고 산화력과 환원력이 비슷해짐을 알아내었다. 또한 산화반응과 환원반응이 일어나는 위치가 분리됨을 확인하였다.

  • PDF

Simulation of Hydrogen Transport in a Single-walled Carbon Nanotube for Storage Safety

  • Oh, Kyung-Su;Kim, Dong-Hyun;Park, Seung-Ho;Kim, Jung-Soo
    • International Journal of Safety
    • /
    • v.6 no.1
    • /
    • pp.16-21
    • /
    • 2007
  • Carbon nanotubes hold much promise as future materials for safe storage of hydrogen. In this paper, hydrogen transport mechanisms in single-walled carbon nano-tubes (SWNTs) for various temperatures and chiral indices were studied using molecular dynamics simulation method. The SWNT models of zigzag (10,0), chiral (10,5) and armchair (10,10) with hydrogen molecules inside were simulated at temperatures ranging from 253K to 373K. Movements of hydrogen molecules ($H_2$) inside a SWNT were analyzed using mean-square displacements and velocity autocorrelation functions.

Effect of dimensionless nonlocal parameter: Vibration of double-walled CNTs

  • Hussain, Muzamal;Asghar, Sehar;Khadimallah, Mohamed Amine;Ayed, Hamdi;Alghamdi, Sami;Bhutto, Javed Khan;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, frequency vibrations of double-walled carbon nanotubes (CNTs) has been investigated based upon nonlocal elastic theory. The inference of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. An innovational nonlocal model to examine the scale effect on vibrational behavior of armchair, zigzag and chiral of double-walled CNTs. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of dimensionless nonlocal parameter has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Correlation between frequency and Poisson's ratio: Study of durability of armchair SWCNTs

  • Muzamal Hussain;Mohamed A. Khadimallah;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.303-311
    • /
    • 2023
  • An analysis of the Poisson's ratios influence of single walled carbon nanotubes (SWCNTs) based on Sander's shell theory is carried out. The effect of Poisson's ratio, boundary conditions and different armchairs SWCNTs is discussed and studied. The Galerkin's method is applied to get the eigen values in matrix form. The obtained results shows that, the decrease in ratios of Poisson, the frequency increases. Poisson's ratio directly measures the deformation in the material. A high Poisson's ratio denotes that the material exhibits large elastic deformation. Due to these deformation frequencies of carbon nanotubes increases. The frequency value increases with the increase of indices of single walled carbon nanotubes. The prescribe boundary conditions used are simply supported and clamped simply supported. The Timoshenko beam model is used to compare the results. The present method should serve as bench mark results for agreeing the results of other models, with slightly different value of the natural frequencies.