Browse > Article

Simulation of Hydrogen Transport in a Single-walled Carbon Nanotube for Storage Safety  

Oh, Kyung-Su (Korea Institute of Industrial Technology)
Kim, Dong-Hyun (Graduate School, Hongik University)
Park, Seung-Ho (Department of Mechanical & System Design Engineering, Hongik University)
Kim, Jung-Soo (Department of Mechanical & System Design Engineering, Hongik University)
Publication Information
International Journal of Safety / v.6, no.1, 2007 , pp. 16-21 More about this Journal
Abstract
Carbon nanotubes hold much promise as future materials for safe storage of hydrogen. In this paper, hydrogen transport mechanisms in single-walled carbon nano-tubes (SWNTs) for various temperatures and chiral indices were studied using molecular dynamics simulation method. The SWNT models of zigzag (10,0), chiral (10,5) and armchair (10,10) with hydrogen molecules inside were simulated at temperatures ranging from 253K to 373K. Movements of hydrogen molecules ($H_2$) inside a SWNT were analyzed using mean-square displacements and velocity autocorrelation functions.
Keywords
carbon nanotubes; molecular dynamics; hydrogen; storage safety; transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nose, S., 1984, 'A Unified Formulation of the Constant Temperature Molecular Dynamics Methods', J. Chem. Phys., 81, pp. 511-519   DOI
2 G. Garberoglio, R. Vallauri, 2003, 'Single Particle Dynamics of Molecular Hydrogen in Carbon Nanotubes', Physics letters A, 316, pp. 407-412   DOI   ScienceOn
3 H. Rafil-Tabar, 2004, 'Computational Modeling of Thermo-Mechanical and Transport Properties of Carbon Nanotubes', Physics Reports, 390, pp. 235-452   DOI   ScienceOn
4 Zwanzig, R., 1961, 'Memory Effects in Irreversible Thermodynamics', Phys. Rev., 124, p. 983   DOI
5 Green, M. S., 1952, J. Chem. Phys., 20, p. 1281   DOI
6 Kubo, R., 1957, 'Statistical Mechanical Theory of Irreversible Processes: I. General Theory and Simple Applications to Magnetic and Conduction problems', J. Phys. Soc. Jpn., 12, p. 570   DOI
7 R. Strobel, J. Garche, P. T. Moseley, L. Jorissen, and G. Wolf, 2006, 'Hydrogen Storage by Carbon Materials', J. Power Sources, 159, pp. 781-801   DOI   ScienceOn
8 Green, M. S., 1954, J. Chem. Phys., 22, p. 398   DOI
9 Hoover, W., 1985, 'Canonical Dynamics: Equilibrium Phase-space distributions', Phys. Rev. A, 31, pp. 1695- 1697   DOI
10 M. S. Dresselhaus, G. Dresselhaus, R. Saito, 1995, Carbon, 33, p. 883   DOI   ScienceOn
11 H. Sun, 1998, 'COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications - Overview with Details on Alkane and Benzene Compounds', J. Phys. Chem. B, 102, pp. 7338-7364   DOI   ScienceOn
12 Isaac F. Silvera, 1980, 'The Solid Molecular Hydrogens in the Condensed Phase: Fundamentals and Static Properties', Reviews of Modern Physics, 52(2), pp. 393-452   DOI
13 C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. Dresselhaus, 1999, Science, 286, p. 1127   DOI   ScienceOn
14 X. Chen, U. Detlaff-Weglikowska, M. Haluska, M. Hulman, S. Roth, M. Hirscher, M. Becher, 2002, Mater. Res. Soc. Symp. Proc., 706, p. 295
15 Nose, S., 1991, 'Constant Temperature Molecular Dyna-mics Methods', Prog. Theor. Phys., Suppl., 103, pp. 1-46   DOI
16 Nose, S., 1984, 'A Molecular Dynamics Method for Simulations in the Canonical Ensemble', Mol. Phys., 52, pp. 255-268   DOI   ScienceOn
17 Li Zhou, 2005, 'Progress and Problems in Hydrogen Storage Methods', Renewable & Sustainable Energy Reviews, 9, pp. 395-408   DOI   ScienceOn
18 A. C. Dillon, T. Gennet, J. L. Alleman, K. M. Jones, P. A. Parilla, M. J. Heben, DOE hydrogen program, FY 1999 Progress Report
19 US Department of Energy, Office of Basic Energy Sciences, Basic Research Needs for the Hydrogen Economy, US DOE, Washington, DC, 2004
20 M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerences: Properties, Processing and Applications, Noyes Publications, Park Ridge, NJ, USA, 1994