DOI QR코드

DOI QR Code

The Electronic Structure of Carbon Nanotubes with Finite Length : Tight Binding Theory

  • Moon, Won-Ha (Department of Electrical and Electronic Engineering, Chung Ang University) ;
  • Kim, Won-Woo (Department of Electrical and Electronic Engineering, Chung Ang University) ;
  • Hwang, Ho-Jung (Department of Electrical and Electronic Engineering, Chung Ang University)
  • Published : 2002.03.01

Abstract

The electronic properties of Carbon Nanotube(CNT) are currently the focus of considerable interest. In this paper, the electronic properties of finite length effect in CNT for the carbon nano-scale device is presented. To Calculate the electronic properties of CNT, Empirical potential method (the extended Brenner potential for C-Si-H) for carbon and Tight Binding molecular dynamic (TBMD) simulation are used. As a result of study, we have known that the value of the band gap decreases with increasing the length of the tube. The energy band gap of (6,6) armchair CNT have the ranges between 0.3 eV and 2.5 eV. Also, our results are in agreements with the result of the other computational techniques.

Keywords

References

  1. S. lijima, 'Helical microtubules of graphite carbon', Nature, Vol.56, p.354, 1999 https://doi.org/10.1038/056354a0
  2. K. S. Kim, H. J. Ryu, and G. E. Jang, 'A study on the growth of carbon nanotubes using icpcvd and their field emission properties', J. of KIEEME(in Korean), Vol.14, No.10, p.850, 2001
  3. S. H. Jeong, G. E. Jang, and H. J. Ryu, 'Growth of carbon nanotubes depending on ething condition of ni-catalytic layer', J. of KIEEME(in Korean), Vol.14, No.9, P.751, 2001
  4. Y. H. Lee, 'Hydrogen storage in carbon nanotubes', Bulletin of KIMMEE, Vol.13, No.5, p.39, 2000
  5. J. W. Mintmire, B. I. Dunlap, and C. T. White, 'Are fullerene tubules metallic?', Phys. Rev. Lett., Vol.68, p.631, 1992 https://doi.org/10.1103/PhysRevLett.68.631
  6. R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, 'Electronic structure of graphene tubules based on C60', Phys. Rev. B, Vol.46, p.1804, 1992 https://doi.org/10.1103/PhysRevB.46.1804
  7. B. I. Dunlap, 'Relating carbon tubules', Phys. Rev. B, Vol.49, p.5643, 1994 https://doi.org/10.1103/PhysRevB.49.5643
  8. M. S. Dresselhaus, 'Carbon nanotubes', Phys. World, 1998
  9. M. Menon and D. Srivastava, 'Carbon nanotube t junctions: nanoscale metal semiconductor metal contact devices', Phys. Rev. Lett., Vol.79, p.4453, 1997 https://doi.org/10.1103/PhysRevLett.79.4453
  10. M. Menon and R. E. Allen, 'New technique for molecular dynamic computer simulations: hell-mann feynman theorem and subspace hamiltonian approach', Phys. Rev. B, Vol.33, p.7099, 1986 https://doi.org/10.1103/PhysRevB.33.7099
  11. A. J. Dyson and P. V. Smith, 'Extension of the Brenner empirical interatomic potential to C-Si-H systems', Surface Science., Vol.355, p.140, 1996 https://doi.org/10.1016/0039-6028(96)00004-0
  12. D. W. Brenner, 'Empirical potential for hydro-carbons for use in simulating the chemical vapor deposition of diamond films', Phys. Xev. B, Vol.42 p.9458, 1990
  13. E. Salonen, K. Nordlund, J. Keinonen, and C. H.Wu, 'Bond breaking mechanism of sputtering', Europhys. Lett., Vol.52, p.504, 2000 https://doi.org/10.1209/epl/i2000-00466-6
  14. S. Fahy and S. G. Louie, 'High pressure structural and electronic properties of carbon', Phys. Rev. B, Vol.36, p.3373, 1987 https://doi.org/10.1103/PhysRevB.36.3373
  15. K. Yoshizawa, K. Yahara, K. Tanaka, and T. Yamabe, 'Bandgap oscillation in polyphenanth-renes', J. Phys. Chem., Vol.102, p.498, 1998 https://doi.org/10.1021/jp972799f
  16. A. Rochefort, D. R. Salahub and P. Avouris, unpublished, 1998
  17. W. J. Hunt and W. A. Goddard, 'Excited states of H2O using improved virtual orbitals', Chem. Phys. Lett.,Vol.3, p.414, 1969 https://doi.org/10.1016/0009-2614(69)80154-5
  18. U. Salzner, P. G. Pickup, R. A. Poirier, and J. B. Lagowski, 'An accurate method for obtaining band gaps in conducting polymers using a dft/hybrid approach', J. Phys. Chem., Vol.102, p.2572, 1998 https://doi.org/10.1021/jp971652l