Simulation of Hydrogen Transport in a Single-walled Carbon Nanotube for Storage Safety

  • Oh, Kyung-Su (Korea Institute of Industrial Technology) ;
  • Kim, Dong-Hyun (Graduate School, Hongik University) ;
  • Park, Seung-Ho (Department of Mechanical & System Design Engineering, Hongik University) ;
  • Kim, Jung-Soo (Department of Mechanical & System Design Engineering, Hongik University)
  • Published : 2007.06.30

Abstract

Carbon nanotubes hold much promise as future materials for safe storage of hydrogen. In this paper, hydrogen transport mechanisms in single-walled carbon nano-tubes (SWNTs) for various temperatures and chiral indices were studied using molecular dynamics simulation method. The SWNT models of zigzag (10,0), chiral (10,5) and armchair (10,10) with hydrogen molecules inside were simulated at temperatures ranging from 253K to 373K. Movements of hydrogen molecules ($H_2$) inside a SWNT were analyzed using mean-square displacements and velocity autocorrelation functions.

Keywords

References

  1. Li Zhou, 2005, 'Progress and Problems in Hydrogen Storage Methods', Renewable & Sustainable Energy Reviews, 9, pp. 395-408 https://doi.org/10.1016/j.rser.2004.05.005
  2. US Department of Energy, Office of Basic Energy Sciences, Basic Research Needs for the Hydrogen Economy, US DOE, Washington, DC, 2004
  3. R. Strobel, J. Garche, P. T. Moseley, L. Jorissen, and G. Wolf, 2006, 'Hydrogen Storage by Carbon Materials', J. Power Sources, 159, pp. 781-801 https://doi.org/10.1016/j.jpowsour.2006.03.047
  4. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerences: Properties, Processing and Applications, Noyes Publications, Park Ridge, NJ, USA, 1994
  5. M. S. Dresselhaus, G. Dresselhaus, R. Saito, 1995, Carbon, 33, p. 883 https://doi.org/10.1016/0008-6223(95)00017-8
  6. Green, M. S., 1952, J. Chem. Phys., 20, p. 1281 https://doi.org/10.1063/1.1700722
  7. Green, M. S., 1954, J. Chem. Phys., 22, p. 398 https://doi.org/10.1063/1.1740082
  8. Kubo, R., 1957, 'Statistical Mechanical Theory of Irreversible Processes: I. General Theory and Simple Applications to Magnetic and Conduction problems', J. Phys. Soc. Jpn., 12, p. 570 https://doi.org/10.1143/JPSJ.12.570
  9. Zwanzig, R., 1961, 'Memory Effects in Irreversible Thermodynamics', Phys. Rev., 124, p. 983 https://doi.org/10.1103/PhysRev.124.983
  10. A. C. Dillon, T. Gennet, J. L. Alleman, K. M. Jones, P. A. Parilla, M. J. Heben, DOE hydrogen program, FY 1999 Progress Report
  11. X. Chen, U. Detlaff-Weglikowska, M. Haluska, M. Hulman, S. Roth, M. Hirscher, M. Becher, 2002, Mater. Res. Soc. Symp. Proc., 706, p. 295
  12. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. Dresselhaus, 1999, Science, 286, p. 1127 https://doi.org/10.1126/science.286.5442.1127
  13. H. Sun, 1998, 'COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications - Overview with Details on Alkane and Benzene Compounds', J. Phys. Chem. B, 102, pp. 7338-7364 https://doi.org/10.1021/jp980939v
  14. Nose, S., 1984, 'A Molecular Dynamics Method for Simulations in the Canonical Ensemble', Mol. Phys., 52, pp. 255-268 https://doi.org/10.1080/00268978400101201
  15. Nose, S., 1984, 'A Unified Formulation of the Constant Temperature Molecular Dynamics Methods', J. Chem. Phys., 81, pp. 511-519 https://doi.org/10.1063/1.447334
  16. Nose, S., 1991, 'Constant Temperature Molecular Dyna-mics Methods', Prog. Theor. Phys., Suppl., 103, pp. 1-46 https://doi.org/10.1143/PTPS.103.1
  17. Hoover, W., 1985, 'Canonical Dynamics: Equilibrium Phase-space distributions', Phys. Rev. A, 31, pp. 1695- 1697 https://doi.org/10.1103/PhysRevA.31.1695
  18. G. Garberoglio, R. Vallauri, 2003, 'Single Particle Dynamics of Molecular Hydrogen in Carbon Nanotubes', Physics letters A, 316, pp. 407-412 https://doi.org/10.1016/j.physleta.2003.07.001
  19. H. Rafil-Tabar, 2004, 'Computational Modeling of Thermo-Mechanical and Transport Properties of Carbon Nanotubes', Physics Reports, 390, pp. 235-452 https://doi.org/10.1016/j.physrep.2003.10.012
  20. Isaac F. Silvera, 1980, 'The Solid Molecular Hydrogens in the Condensed Phase: Fundamentals and Static Properties', Reviews of Modern Physics, 52(2), pp. 393-452 https://doi.org/10.1103/RevModPhys.52.393