• Title/Summary/Keyword: Are voltage

Search Result 12,420, Processing Time 0.038 seconds

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

A DTC-PWM Control Scheme of PMSM using an Approximated Voltage Function of Voltage Vector (전압벡터의 근사 전압함수를 이용한 PMSM의 DTC-PWM 제어방식)

  • Kwak, YunChang;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.421-428
    • /
    • 2015
  • An advanced direct torque control (DTC) with pulse width modulation (PWM) method is presented in this paper. The duty ratio calculation of the selected voltage vector is based on the voltage functions of the selected voltage vector according to the sector angle. The proposed DTC uses a conventional DTC scheme with six sector divisions and switching rules. However, the winding voltages are supplied by the PWM approach. Furthermore, the duty ratio of the switching voltage vector is determined by the flux, torque error, and motor speed. The base voltage that shall determine the duty ratio can be calculated by approximate voltage functions according to the voltage angle. For the calculation of base voltages, second-order quadratic functions are used to express the output voltage of the selected voltage vector according to voltage angle. The coefficients for the second-order quadratic functions are selected by the voltage vector, which is determined by the switching rules of the DTC. In addition, the voltage functions are calculated by the coefficients and voltage angle between the voltage vector and rotor position. The switching voltages from the calculated duty ratio can supply the proper torque and flux to reduce the ripple and error. The proposed control scheme is verified through practical experimental comparisons.

Design and Application of a Single Phase Multilevel Inverter Suitable for using as a Voltage Harmonic Source

  • Beser, Ersoy;Arifoglu, Birol;Camur, Sabri;Beser, Esra Kandemir
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • This paper presents a single phase multilevel inverter for using as a voltage harmonic source. First, a single phase multilevel inverter system is presented and the structural parts of the inverter are described. In order to obtain multilevel output voltage waveforms, a switching strategy based on calculating switching angles is explained and an improved formula for determining switching angles is given. Simulation and experimental results of multilevel voltage waveforms are given for 15, 31 and 127 levels. The proposed topology does not only produce output voltages with low THD values. It also produces the required harmonic components on the output voltage. For this purpose, equations for switching angles are constituted and the switching functions are obtained. These angles control the output voltage as well as provide the required specific harmonics. The proposed inverter structure is simulated for various functions with the required harmonic components. The THD values of the output voltage waves are calculated. The simulated functions are also realized by the proposed inverter structure. By using a harmonic analyzer, the harmonic spectrums, which belong to the output voltage forms, are found and the THD values are measured. Simulation and experimental results are given for the specific functions. The proposed topology produces perfectly suitable results for obtaining the specific harmonic components. Therefore, it is possible to use the structure as a voltage harmonic source in various applications.

Voltage disturbance detection method for HTS tape using electromagnetically coupled coils

  • Song, Seunghyun;Lee, Jiho;Lee, Woo Seung;Jin, Hongwoo;Hwang, Young Jin;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • This paper represents the detection method of voltage disturbance for high temperature superconducting (HTS) tape using electromagnetically coupled coils. In order to detect the voltage as the superconductor transits from the superconducting state to the normal conduction state, voltage taps are widely used to get the voltage signal. And voltage taps are connected to data acquisition device via signal wires. However this new suggested method can detect the superconducting transition voltage without signal wires between voltage taps and data acquisition device by using electromagnetically coupled coils. This system consists of two electromagnetically coupled coils, the first coil to detect and transmit the voltage of HTS tape and the second coil to pick up the transmitted voltage from the first coil. By using this new suggested method, we can build the 'separated voltage-detection system'. HTS tape and first coil are located under liquid nitrogen vessel and the second coil is located under room temperature condition. In this paper, experiments are performed to verify the feasibility of the proposed method. As the result of the experiment, the separated voltage-detection system using electromagnetically coupled coils can successfully observe superconducting-normal transition of HTS tapes.

Minimization of Voltage Stress across Switching Devices in the Z-Source Inverter by Capacitor Voltage Control

  • Tran, Quang-Vinh;Chun, Tae-Won;Kim, Heung-Gun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.335-342
    • /
    • 2009
  • The Z-source inverter (ZSI) provides unique features such as the ability to boost dc voltage with a single stage simple structure. Although the dc capacitor voltage can be boosted by a shoot-through state, the voltage stress across the switching devices is rapidly increased, so high switching device power is required at the ZSI. In this paper, algorithms for minimizing the voltage stress are suggested. The possible operating region for obtaining a desired ac output voltage according to both the shoot-through time and active state time is investigated. The reference capacitor voltages are derived for minimizing the voltage stress at any desired ac output voltage by considering the dc input voltage. The proposed methods are carried out through the simulation studies and experiments with 32-bit DSP.

Optimal Algorithms for Voltage Management in Distribution Systems Interconnected with New Dispersed Sources

  • Rho, Dae-Seok;Kook, Kyung-Soo;Wang, Yong-Peel
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.192-201
    • /
    • 2011
  • The optimal evaluation algorithms for voltage regulation in the case where new dispersed sources are operated in distribution systems are studied. Handling the interconnection issues for proper voltage managements are often difficult and complicated because professional skills and enormous amounts of data during evaluations are needed. Typical evaluation algorithms mainly depend on human ability and quality of data acquired, which inevitably cause the different results for the same issue. Thus, unfair and subjective evaluations are unavoidable. In order to overcome these problems, we propose reasonable and general algorithms based on the standard model system and proper criterion, which offers fair and objective evaluation in any case. The proposed algorithms are divided into two main themes. One is an optimal algorithm for the voltage control of multiple voltage regulators in order to deliver suitable voltage to as many customers as possible, and the other is a proper evaluation algorithm for the voltage management at normal and emergency conditions. Results from a case study show that proposed methods can be a practical tool for the voltage management in distribution systems including dispersed sources.

The Concept and International Standards of Power Quality (전력 품질의 개념 정립과 국제 표준 비교)

  • Lim, Su-Saeng;Lee, Eun-Woong;Sohn, Hong-Kwan;Joh, Hyun-Kil;Jeong, Jong-Ho;Kim, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.174-177
    • /
    • 2001
  • The dependence of modern life upon the continuous supply of electrical energy makes system reliability and power quality topics of the utmost importance in the power systems. Power quality is the combination of voltage quality and current quality. But in this paper, voltage quality and harmonic distortion are focused. Transient phenomena and current quality are not included. Voltage quality is split into voltage sags. voltage swells, and short interruptions. These voltage variations are studied on their definitions, origins, the effect on electric equipment. Related industrial standards and guidelines are summarized. Harmonic voltage and current distortion are strongly linked. The concepts and contributions of harmonic distortions are studied. Typical symptoms of harmonic problems and a summary of the trends and guidelines are given.

  • PDF

Voltage Sag and Swell Generator with Thyristor Controlled Reactor (TCR을 이용한 Voltage Sag와 Swell 발생장치에 대한 연구)

  • Park, T.B.;Kwon, G.H.;Chung, Y.H.;Lee, J.;Lim, G.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.25-27
    • /
    • 2002
  • This paper describes a new economical voltage sag and swell generator suitable to the evaluations of high power custom power devices such as DVR (Dynamic Voltage Restorer) and DSTATCOM (Distribution Static Compensator). This system was designed to generate the several power quality disturbances in MVA power ratings - voltage sag and swell, under voltage, over voltage and harmonic distortions. The basic idea for voltage sag and swell is to use the voltage drop across a reactor, while the voltage swell is to use the step-up transformer and the TCR(Thyristor Controlled Reactor). In this paper, two identical 3 phase TCRs and a step-up transformer with tap changer are used. Additional harmonic filters are added to reduce the voltage distortion when TCRs are operated. Simulation results are given for several cases of voltage sag and swell generations.

  • PDF

A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors (교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

Analysis of Insulation Characteristics of Low-Voltage Induction Motors Fed by Pulse-Controlled Inverters (인버터 구동형 저압 유동전동기의 절연특성 분석)

  • 박도영
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.195-198
    • /
    • 2000
  • In this paper the insulation characteristics test results of 25 low-voltage induction motors($3\phi$, 5HP, 380V) are presented. Five different types of insulation techniques are applied to 25 motors. The maximum partial discharge (PD) magnitude ($\textrm{Q}_{m}$) discharge inception voltage (DIV) dissipation factor tip-up ($\Delta$tan$\delta$) and rate of change in AC current($\Delta$I) are measured by PD and AC current tests. Also the insulation breakdown tests by high voltage pulse are performed and the corresponding breakdown voltage are obtained.

  • PDF