• Title/Summary/Keyword: Ar Gas

Search Result 1,469, Processing Time 0.021 seconds

Photocatalyst characteristic of WO3 thin film with sputtering process (스퍼터링법에 의해 제작된 WO3 박막의 광분해 특성)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.420-424
    • /
    • 2016
  • In this study, we developed photocatalytic technology to address the emerging serious problem of air pollution through indoor air cleaning. A single layer of $WO_3$ was prepared by using the dry process of general RF magnetron sputtering. At a base vacuum of $1.8{\times}10^{-6}$[Torr], the optical and electrical properties of the resulting thin films were examined for use as a transparent electrode as well as a photocatalyst. The single layer of $WO_3$ prepared at an RF power of 100 [W], a pressure of 7 [mTorr] and Ar and $O_2$ gas flow rates of 70 and 2 sccm, respectively, showed uniform and good optical transmittance of over 80% in the visible wavelength range from 380 [nm] to 780 [nm]. The optical catalyst characteristics of the $WO_3$ thin film were examined by investigating the optical absorbance and concentration variance in methylene blue, where the $WO_3$ thin film was immersed in the methylene blue. The catalytic characteristics improved with time. The concentration of methylene blue decreased to 80% after 5 hours, which confirms that the $WO_3$ thin film shows the characteristics of an optical catalyst. Using the reflector of a CCFL (cold cathode fluorescent lamp) and the lens of an LED (lighting emitting diode), it is possible to enhance the air cleaning effect of next-generation light sources.

The Study on the Crystal Growing of Mn-Zn Ferrite Single Crystals by Floating Zone Method (Floating Zone법에 의한 Mn-Zn Ferrite 단결정성장에 관한 연구)

  • 정재우;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.10-19
    • /
    • 1992
  • Mn - Zn Ferrite has physical properties of the high initial permeability, saturation magnetic flux density, and low loss factor as a representative magnetic material of soft ferrites, in addition the mechanical property is excellent as a single crystal. Therefore it is important electronic components and used for VTR Head. Mn - Zn Ferrite single crystals with the diameter 8mm were grown in atmosphere mixed with $O_2$ and Ar gas by the Floating Zone(FZ) method that impurities can not be incorporated to the crystals because of not-using the crucible to put in the melt, and the sharp temperature gradient results from making a focus at one point utilizing the infrared ray emitted from the halogen lamp as a heat source. During the crystal growing, the highest temperature of melting area was maintained to be $1650^{\circ}C$, growth rate and rotation rate were 10 mm/hr, 20 rpm respectively. The phases and the growth directions of crystals were determined from the analysis of X RD patterns, Laue, TEM diffraction patterns and etch pit shapes were observed by the optical microscope through the chemical etching. The corelation of optimum conditions for acquiring the better crystals was found out with the growth rate, the length and diameter of melt at the interface according to the diameter of feed rod, and the patterns of growing interface also studied.

  • PDF

Characteristics of TiN Barrier Metal Prepared by High Density Plasma CVD Method (고밀도 플라즈마 CVD 방법에 의한 TiN barrier metal 형성과 특성)

  • Choe, Chi-Gyu;Gang, Min-Seong;O, Gyeong-Suk;Lee, Yu-Seong;O, Dae-Hyeon;Hwang, Chan-Yong;Son, Jong-Won;Lee, Jeong-Yong;Kim, Geon-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1129-1136
    • /
    • 1999
  • TIN films were prepared on Si(100) substrate by ICP-CVD(inductive1y coupled plasma enhanced chemical vapor deposition) using TEMAT(tetrakis ethylmethamido titanium : Ti$[\textrm{N}\textrm{(CH)}_{3}\textrm{C}_{2}\textrm{H}_{5}]_{4}$) precursor at various deposition conditions. Phase, microstructure, and the electrical properties of TIN films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and electrical measurements. Polycrystalline TiN films with B1 structure were grown at temperatures over $200^{\circ}C$. Preferentially oriented along TiN(111) films were obtained at temperatures over $300^{\circ}C$ with the flow rates of 10, 5, and 5 sccm for TEMAT, $\textrm{N}_{2}$ and Ar gas. The TiN/Si(100) interface was flat and no chemical reaction between TIN and $\textrm{SiO}_2$ was found. The resistivity, carrier concentration and the carrier mobility for the TiN sample prepared at $500^{\circ}C$ are 21 $\mu\Omega$cm, 9.5$\times\textrm{10}^{18}\textrm{cm}^{-3}$ and $462.6\textrm{cm}^{2}$/Vs, respectively.

  • PDF

The current status in the silicon crystal growth technology for solar cells (태양전지용 규소 결정 성장 기술 개발의 현황)

  • Lee, A-Young;Lee, Dong-Gue;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • Three kinds of crystalline silicon have been used for the solar cell grade. First of all, single crystalline silicon is the main subject to enhance the production yield. Most of the efforts are focused on the control of the melt-crystal interface shape affected by the crystal-crucible rotation rate. The main subject in the multi-crystalline silicon ingot is the contamination control. Faster Ar gas flow above the melt surface will lower the carbon contamination in the crystal. And also, twin boundary electrically inactive is found to be more effective than grain boundary for the improvement of the MCLT. In the case of mono-like silicon material, propagation of the multi-crystalline silicon growing from the inner side crucible is the problem lowering the portion of the single crystalline part at the center of the ingot. Crystal growing apparatus giving higher cooling rate at the bottom and lower cooling rate at the side crucible was suggested as the optimum solution obtaining higher quality of the mono-like silicon ingot. Proper application of the seeds at the bottom of the crucible would be one of the solutions.

The Effects of $O_2$ Partial Prewwure on Soft Magnetic Properties of Fe-Hf-O Thin Films (Fe-Hf-O계 박막에서 산소 분압 변화가 박막특성에 미치는 영향)

  • 박진영;김종열;김광윤;한석희;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.243-248
    • /
    • 1997
  • The effect of $O_2$ partial pressure on microstructure and soft magnetic properties of as-deposited Fe-Hf-O thin film alloys, which are produced by rf magnetron sputtering method in $Ar+O_2$ mixed gas atmosphere, are investigated. Saturation magnetization ($4{\pi}M_s$) of Fe-Hf-O film were decreased with increasing $O_2$ partial pressure, the best soft magnetic properties exhibit at $O_2$ partial pressure of 10%. With further increase of $O_2$ partial pressure, soft magnetic properties decreased continuously. The $Fe_{82}Hf_{3.4}O_{14.6}$ film with $P_{O2}=10%$ exhibits good soft magnetic properties with $4{\pi}M_s=17.7kG$, $H_c=0.7Oe$ and ${\mu}_ {eff}$ (1~100 MHz)=2,500, respectively. The addition of O is effective in grain refinement. In case of $P_{O2}=15%$, it is observed that $Fe_3O_4$ compound is formed and high frequency soft magnetic properties are decrease. The electrical resistvity($\rho$) of Fe-Hf-O film is increased with increasing $O_2$ partial pressure. Electrical resistivity of $Fe_{82}Hf_{3.4}O_{14.6}$ film was 5 times higher than that of the film without oxygen. Thus, it is considered that the good magnetic properties of $Fe_{82}Hf_{3.4}O_{14.6}$ film results from decreasing the $\alpha$-Fe grain size by precipitates (Hf and O), high electrical resistivity.

  • PDF

Effects of Composition on Soft Magnetic Properties and Microstructures of Fe-Hf-O Thin Films (Fe - Hf - O계 박막에서 조성이 미세구조 및 연자기 특성에 미치는 효과)

  • 박진영;김종열;김광윤;한석희;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.237-242
    • /
    • 1997
  • The microstructure and soft magnetic properties of as-deposited Fe-Hf-O thin film alloys, which are produced at $P_{O2}=10%$ by rf magnetron sputtering method in $Ar+O_2$ mixed gas atmosphere, is investigated. Newly developed $Fe_{82}Hf_{3.4}O_{14.6}$ film exhibits good soft magnetic properties with $4{\pi}M_s=17.7$ kG, $H_c=0.7$ Oe and ${\mu}_{eff}$(0.5~100MHz)=2,500, respectively. The Fe-Hf-O films are composed of $\alpha$-Fe nanograins and amorphous phase with larger amounts of Hf and O elements which chemically combine each other. With increasing Hf area fraction, Hf and O contents increased proportionally. It was considered that O content in films was determined by Hf contents, because O was chemically combined with Hf. It results from decreasing the $\alpha$-Fe grain size by precipitates (Hf and O), high electrical resistivity. The $Fe_{82}Hf_{3.4}O_{14.6}$ film exhibits the quality factor (Q=$\mu$'/$\mu$") of 25 at 20 MHz. These good frequency characteristics are considered to be superior to other films already reported.o other films already reported.

  • PDF

The Effects of Nitrogen on Microstructure and Magnetic Properties of Nanocrystalline Fe-Nb-B-N Thin Films (나노결정구조 Fe-Nb-B-N 박막의 미세구조 및 자기적 특성)

  • 박진영;서수정;노태환;김광윤;김종열;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.250-257
    • /
    • 1997
  • The microstructure and magnetic properties of Fe-Nb-B-N thin film alloys, which produced by rf magnetron sputtering method in $Ar+N_2$ mixed gas atmosphere, were investigated. The $Fe_{70}Nb_{14}B_{11}N_5$ films, annealed at 59$0^{\circ}C$, exhibit soft magnetic properties: $4{\pi}M_s=16.5kG$ , $H_c=0.13Oe$ and ${\mu}_{eff}$ (1~10 MHz)=5, 000. The frequency stability of the Fe-Nb-B-N films has also been found to be good up to 10 MHz. The Fe-Nb-B-N thin film alloys annealed at 59$0^{\circ}C$ consist of three phase; fine crystalline $\alpha$-Fe phase with grain size of about 5~10 nm, Nb-B rich amorphous phase and Nb-nitride precipitates with the size of less than 3 nm. Annealed Fe-Nb-B films have two phases; $\alpha$-Fe grains with the size of about 10 nm and Nb-B rich amorphous phase. The addition of N decreased $\alpha$-Fe grain size due to the precipitation of NbN. The good magnetic properties of the Fe-Nb-B-N film alloys are due to fine $\alpha$-Fe grains resulting from the precipitation of NbN.

  • PDF

Mössbauer Study of Silver Nanoparticle Coated Perovskites La0.7Sr0.3Co0.3Fe0.7O3-δ (LSCF) (은(Ag) 나노입자가 코팅된 페롭스카이트 La0.7Sr0.3Co0.3Fe0.7O3-δ의 Mössbauer 분광연구)

  • Uhm, Young-Rang;Rhee, Chang-Kyu;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.37-41
    • /
    • 2012
  • The Ag nanoparticles attached $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ (LSCF) perovskites were prepared by plasma method. The Ag nanoparticles with size of several nanometers deposited from the Ag target were coated on the surface of LSCF powders with size range from 0.2 to 3 ${\mu}m$. The agglomeration of Ag particles annealed at $800^{\circ}C$ under inert gas of Ar were rarely observed. The inter-diffusion between surface Ag and core LSCF is effectively strong to prevent aggregation of Ag nanoparticles. The wave number of FT-IR spectra for LSCF were largely shifted as the concentration of Ag on LSCF up to 2.11 wt.%. The ionic states of irons in LSCF were measured by M$\ddot{o}$ssbauer spectroscopy. The small amount of $Fe^{4+}$ ions are converted to $Fe^{3+}$ ions after Ag nanopartcles were coated on LSCF.

Numerical Investigation of Ion and Radical Density Dependence on Electron Density and Temperature in Etching Gas Discharges (식각공정용 가스방전에서 이온 및 활성종 밀도의 전자밀도 및 온도 의존성에 대한 수치해석적 분석)

  • An, Choong-Gi;Park, Min-Hae;Son, Hyung-Min;Shin, Woo-Hyung;Kwon, Deuk-Chul;You, Shin-Jae;Kim, Jung-Hyung;Yoon, Nam-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.422-429
    • /
    • 2011
  • Dependence of radical and ion density on electron density and temperature is numerically investigated for $Cl_2$/Ar, $CF_4$, $CF_4/O_2$, $CF_4/H_2$, $C_2F_6$, $C_4F_8$ and $SF_6$ discharges which are widely used for etching process. We derived a governing equation set for radical and ion densities as functions of the electron density and temperature, which are easier to measure relatively, from continuity equations by assuming steady state condition. Used rate coefficients of reactions in numerical calculations are directly produced from collisional cross sections or collected from various papers. If the rate coefficients have different values for a same reaction, calculation results were compared with experimental results. Then, we selected rate coefficients which show better agreement with the experimental results.

Colossal Resistivity Change of Polycrystalline NiO Thin Film Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터 방법에 의한 다결정 NiO 박막의 비저항 변화)

  • Kim, Youmg-Eun;No, Young-Soo;Park, Dong-Hee;Choi, Ji-Won;Chae, Keun-Hwa;Kim, Tae-Hwan;Choi, Won-Kook
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.475-482
    • /
    • 2010
  • Polycrystalline NiO thin films were deposited on glass substrate by RF magnetron sputtering using only Ar as a plasma sputter gas. based on the analysis of x-ray diffraction (XRD), NiO films had a polycrystalline cubic (NaCl type) structure. NiO thin films grown below and above $200^{\circ}C$ showed preferred orientation of (111) and (220) respectively. It showed colossal change in electrical resistivity as much a ${\sim}10^7$ order form an insulating state of $105\;{\Omega}cm$ below $200^{\circ}C$ to a conducting state of $10^{-2}{\sim}10^{-1}\;{\Omega}cm$ above $300^{\circ}C$ such a Mott metal-insulator transition (MIT) in polycrystalline.