Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2014.24.2.047

The current status in the silicon crystal growth technology for solar cells  

Lee, A-Young (Department of Materials Science and Engineering, Incheon National University)
Lee, Dong-Gue (Department of Materials Science and Engineering, Incheon National University)
Kim, Young-Kwan (Department of Materials Science and Engineering, Incheon National University)
Abstract
Three kinds of crystalline silicon have been used for the solar cell grade. First of all, single crystalline silicon is the main subject to enhance the production yield. Most of the efforts are focused on the control of the melt-crystal interface shape affected by the crystal-crucible rotation rate. The main subject in the multi-crystalline silicon ingot is the contamination control. Faster Ar gas flow above the melt surface will lower the carbon contamination in the crystal. And also, twin boundary electrically inactive is found to be more effective than grain boundary for the improvement of the MCLT. In the case of mono-like silicon material, propagation of the multi-crystalline silicon growing from the inner side crucible is the problem lowering the portion of the single crystalline part at the center of the ingot. Crystal growing apparatus giving higher cooling rate at the bottom and lower cooling rate at the side crucible was suggested as the optimum solution obtaining higher quality of the mono-like silicon ingot. Proper application of the seeds at the bottom of the crucible would be one of the solutions.
Keywords
Crystalline silicon solar cell; Single crystalline Si; Multi-crystalline Si; High efficiency; Mono-like Si;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kutsukake, N. Usami, Y. Ohno, Y. Tokymoto and I. Yonenaga, "Control of Grain boundary propagation in Mono-like Si: Utilization of functional grain boundaries", Physics Express 6 (2013) 025505.   DOI
2 K. Nakajima, R. Murai, K. Morishita and K. Kutsukake, "Growth of single bulk crystals with low oxygen concentrations by the noncontact crucible method using silica crucibles without $Si_3N_4$ coating", J. Cryst. Growth 372 (2013) 121.   DOI
3 J.D. Zook, "Effects of grain boundaries in polycrystalline solar cells", Appl. Phys. Lett. 37 (1980) 223.   DOI
4 X. Tang, Laurent A. Fancis, L. Gong, F. Wang, J.R. Raskin, D. Flandre, S. Zhang, D. You, L. Wu and B. Dai, "Characterization of high-efficiency multi-crystalline silicon in industrial production", Sol. Energy Mater. Sol. Cells 117 (2013) v 225.   DOI
5 H. Miyazawa, L.J. Liu, S. Hisamatsu and K. Kakimoto, "Numerical analysis of the influence of tilt of crucibles on interface shape and fields of temperature and velocity in the unidirectional solidification process", J. Cryst. Growth 310 (2008) 1034.   DOI
6 K. Nakajima, K. Morishita, R. Murai and K. Kutsukake, "Growth of high-quality multicrystalline Si ingots using noncontact crucible method", J. Cryst. Growth 355 (2012) 38.   DOI
7 O.A. Noghabi, M. M'Hamdi and M. Jomaa, "Effect of crystal and crucible rotations on the interface shape of Czochralski grown silicon single crystals", J. Cryst. Growth 318 (2011) 173.   DOI
8 X. Gu, X. Yu, K. Guo, L. Chen, D. Wang and D. Yang, "Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells", Sol. Energy Mater. Sol. Cells 101 (2012) 95.   DOI   ScienceOn
9 K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, A. Nomura, T. Shishido and K. Nakajima, "Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting", Acta Materialia 54 (2006) 3191.   DOI   ScienceOn
10 B. Gao, X.J. Chen, S. Nakano and K. Kakimoto, "Crystal growth of high-purity multicrystalline silicon using a unidirectional solidification furnace for solar cells", J. Cryst. Growth 312 (2010) 1572.   DOI
11 N. Stoddard, B. Wu, I. Witting, M. Wagener, Y. Park, G. Rozgonyi and R. Clark, "Casting single crystal silicon: novel defect profiles from BP solar's mono2TM wafers", Solid State Phenomenon 131-132 (2008) 1.
12 L. Raabe, O. Patzold, I. Kupka, J. Ehrig, S. Wurzner and M. Stelter, "The effect of graphite components and crucible coating on the behavior of carbon and oxygen in multicrystalline silicon", J. Cryst. Growth 318 (2011) 234.   DOI
13 H. Matsuo, R.B. Ganesh, S. Nakano, L.J. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi and K. Kakimoto, "Analysis of oxygen incorporation in unidirectionally solidified multicrystalline silicon for solar cells", J. Cryst. Growth 310 (2008) 2204.   DOI
14 G. Muller and J. Friedrich, "Optimization and modeling of photovoltaic silicon crystallization processes", Selected Topics on Crystal Growth 1270 (2010) 255.
15 B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi and K. Kakimoto, "Reduction of polycrystalline grains region near the crucible wall during seeded growth of monocrystalline silicon in a unidirectional solidification furnace", J. Cryst. Growth 352 (2012) 47.   DOI
16 C.W. Lan, "Recent progress of crystal growth modeling and growth control", Chem. Eng. Sci. 59 (2004) 1437.   DOI
17 W. Ma, G. Zhong, L. Sun, Q. Yu, X. Huang and L. Liu, "Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells", Sol. Energy Mater. Sol. Cells 100 (2012) 231.   DOI
18 B.C. Sim, Y.H. Jung, J.E. Lee and J.E. Lee, "Effect of the crystal-melt interface on the grown-in defects in silicon CZ growth", J. Cryst. Growth 299 (2007) 152.   DOI