DOI QR코드

DOI QR Code

Mössbauer Study of Silver Nanoparticle Coated Perovskites La0.7Sr0.3Co0.3Fe0.7O3-δ (LSCF)

은(Ag) 나노입자가 코팅된 페롭스카이트 La0.7Sr0.3Co0.3Fe0.7O3-δ의 Mössbauer 분광연구

  • Uhm, Young-Rang (Radioisotope Research Division, Atomic Energy Research Institure (KAERI)) ;
  • Rhee, Chang-Kyu (Nuclear Materials Development Division, Atomic Energy Research Institure (KAERI)) ;
  • Kim, Chul-Sung (Department of Nano-electro Physics, Kookmin University)
  • 엄영랑 (한국원자력연구원, 동위원소 이용기술 개발부) ;
  • 이창규 (한국원자력연구원, 원자력재료개발부) ;
  • 김철성 (국민대학교 나노전자물리학과)
  • Received : 2012.02.10
  • Accepted : 2012.04.03
  • Published : 2012.04.30

Abstract

The Ag nanoparticles attached $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ (LSCF) perovskites were prepared by plasma method. The Ag nanoparticles with size of several nanometers deposited from the Ag target were coated on the surface of LSCF powders with size range from 0.2 to 3 ${\mu}m$. The agglomeration of Ag particles annealed at $800^{\circ}C$ under inert gas of Ar were rarely observed. The inter-diffusion between surface Ag and core LSCF is effectively strong to prevent aggregation of Ag nanoparticles. The wave number of FT-IR spectra for LSCF were largely shifted as the concentration of Ag on LSCF up to 2.11 wt.%. The ionic states of irons in LSCF were measured by M$\ddot{o}$ssbauer spectroscopy. The small amount of $Fe^{4+}$ ions are converted to $Fe^{3+}$ ions after Ag nanopartcles were coated on LSCF.

DC 스퍼터를 이용하여 은(Ag) 나노입자를 입도 0.2~3 ${\mu}m$ 크기를 갖는 페롭스카이트(Perovskite) $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$(LSCF) 입자 표면에 코팅하여 복합재를 제조하였다. 제조된 LSCF/Ag 복합재에서 Ag 나노입자는 수 나노입자 크기로 형성되었으며 Ar가스 분위기에서 $800^{\circ}C$ 열처리 후에도 Ag입자가 응집되는 현상이 없어 안정적으로 증착되었음을 확인하였다. LSCF 표면에 Ag나노입자 코팅양이 2.11 wt.%까지 증가함에 따라 Fourier Transform Infrared Spectroscopy(FT-IR) 분광기의 파수가 크게 변하여 강한 결합이 형성되어 있으며, Ag 코팅 전후 결정 구조의 변화는 없으나 M$\ddot{o}$ssbauer 분광 분석으로 확인한 결과 $Fe^{4+}$ 이온이 감소하면서 $Fe^{3+}$ 이온이 증가하여 LSCF의 전자 가에 변화가 생김을 확인 할 수 있었다.

Keywords

References

  1. E. Perry Murray, M. J. Sever, and S.A. Barnett, Solid State Ionics 148, 27 (2002). https://doi.org/10.1016/S0167-2738(02)00102-9
  2. Yu Liu, Masashi Mori, Yoshihiro Funahashi, Yoshinobu Fujishiro, and Atsushi Hirano, Electrochem. Commun. 9, 1918 (2009).
  3. T. L. Nguyen, T. Honda, T. Kato, Y. Iimura, K. Kato, A. Neigishi, K. Nozaki, M. Shiono, A. Kobayashi, K. Hosoda, Z. Cai, and M. Dokiya, J. Electrochem. Soc. 151, A1230 (2004). https://doi.org/10.1149/1.1768131
  4. M. Muranaka, K. Sasaki, A. Suzuki, and T. Terai, J. Electrochem. Soc. 156, B743 (2009). https://doi.org/10.1149/1.3110882
  5. G. Kim, S. Lee, J. Y. Shen, G. Corre, J. T. S. Irvine, J. M. Vohs, and R. J. Gorte, Electrochem. Solid State 12, B48 (2009). https://doi.org/10.1149/1.3065971
  6. Y. Liu, S. Hashimoto, K. Yasumoto, K. Takei, M. Mori, Y. Funahashi, Y. Fijishiro, A. Hirano, and Y. Takeda, Curr. Appl. Phys. 9, S51 (2009). https://doi.org/10.1016/j.cap.2008.08.021
  7. S. H. Mun, S. W. Kang, J.-S. Cho, S.-K. Koh, and Y. S. Kang, J. Memb. Sci. 332, 1 (2009). https://doi.org/10.1016/j.memsci.2009.01.024
  8. J. J. Shin, M. N. Sa, B.H. Chae, and S. K. Koh, The Korea Patent Registration Number; 0773758 (2007).
  9. S.-H. Jun, Y. R. Uhm. C. K. Rhee, R.-H. Song, S.-J. Park, and H.-W. Kim, J. Kor. Phys. Soc. 59, 3648 (2011). https://doi.org/10.3938/jkps.59.3648
  10. S.-H. Jun, Y. R. Uhm, R.-H. Song, and C. K. Rhee, Curr. Appl. Phys. 11, S305e (2011). https://doi.org/10.1016/j.cap.2010.11.029