Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.6.422

Numerical Investigation of Ion and Radical Density Dependence on Electron Density and Temperature in Etching Gas Discharges  

An, Choong-Gi (School of Electrical Engineering, Chungbuk National University)
Park, Min-Hae (School of Electrical Engineering, Chungbuk National University)
Son, Hyung-Min (School of Electrical Engineering, Chungbuk National University)
Shin, Woo-Hyung (School of Electrical Engineering, Chungbuk National University)
Kwon, Deuk-Chul (Convergence Plasma Research Center, National Fusion Research Institute)
You, Shin-Jae (Center for Vacuum Technology, Korea Research Institute for Standard and Science)
Kim, Jung-Hyung (Center for Vacuum Technology, Korea Research Institute for Standard and Science)
Yoon, Nam-Sik (School of Electrical Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.6, 2011 , pp. 422-429 More about this Journal
Abstract
Dependence of radical and ion density on electron density and temperature is numerically investigated for $Cl_2$/Ar, $CF_4$, $CF_4/O_2$, $CF_4/H_2$, $C_2F_6$, $C_4F_8$ and $SF_6$ discharges which are widely used for etching process. We derived a governing equation set for radical and ion densities as functions of the electron density and temperature, which are easier to measure relatively, from continuity equations by assuming steady state condition. Used rate coefficients of reactions in numerical calculations are directly produced from collisional cross sections or collected from various papers. If the rate coefficients have different values for a same reaction, calculation results were compared with experimental results. Then, we selected rate coefficients which show better agreement with the experimental results.
Keywords
Plasma; Radical composition; Etching process;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 http://plasma.kisti.re.kr/
2 A. V. Vasenkov, X. Li, G. S. Oehrlein, and M. J. Kushner, J. Vac. Sci. Technol. A 22, 511 (2004).   DOI
3 Y. Itikawa, J. Phys. Chem. Ref. Data 38, 1 (2009).   DOI
4 P. Ho, J. E. Johannes, R. J. Buss, and E. Meeks, J. Vac. Sci. Technol. A 19, 2344 (2001).   DOI
5 M. J. Brunger, R. S. Brusa, S. J. Buckman, M. T. Elford, Y. Hatano, Y. Itikawa, K. Kameta, G. P. Karwasz, N. Kouchi, B. G. Lindsay, M. A. Mangan, and A. Zecca, Photon and Electorn Interactions with Atoms, Molecules and Ions, (Springer, New York, 2003), pp. 6-146.
6 http://jila.colorado.edu/avp/collision_data/electronneutaral/ELECTRON.TXT
7 R. R. Laher and F. R. Gilmore, J. Phys. Chem. Ref. Data 19, 277 (1990).   DOI
8 Y. Itikawa and A Ichimura, J. Phys. Chem, Ref. Data, 19, 637 (1990).   DOI
9 S. S. Kim, Theoretical studies of inductively coupled plasma source and enhanced plasma heating in a week external magnetic field, Ph. D. Thesis, (Korea Advanced Institute of Science and Technology, 1999).
10 G. I. Font, W. L. Morgan, and G. Mennenga, J. Appl. Phys. 91, 3530 (2002).   DOI
11 G. Kokkoris, A. Panagiotopoulos, A. Goodyear, M. Cooke, and E. Gogolides, J. Phys. D: Appl. Phys. 42, 1 (2009).
12 Alfred Grill, Cold Plasma in Materials Fabrication (John Wiley & Sons, New York, 1994).
13 S. J. Kim, M. A. Lieberman, A. J. Lichtenberg, and J. T. Gudmundsson, J. Vac. Sci. Technol. A 24, 2025 (2006).   DOI
14 J. T. Gudmundsson, J. Phys. D: Appl. Phys. 35, 328 (2002).   DOI
15 M. V. Malyshev and V. M. Donnelly, J. Appl. Phys. 90, 1130 (2001).   DOI
16 W. K. Kim, M. H. Lee, C. W. Chung, and J. H. Kim, Journal of the Korean Physical Society 49, 1687 (2006).
17 J. H. Kim, K. H. Chung, and Y. S. Yoo, Journal of the Korean Physical Society 47, 249 (2005).
18 J. R. Roberts, J. Res. Natl. Inst. Stand. Technol. 100, 353 (1995).   DOI   ScienceOn
19 R. E. March, Journal of Mass Spectrometry 32, 351 (1997).   DOI
20 S. Tinck, W. Boullart, and A. Bogaerts, J. Phys. D: Appl. Phys. 41, 1 (2008).   DOI   ScienceOn
21 W. G. Lee, D. C. Kwon, and N. S. Yoon, J. Korean Vaccum Soc. 18, 426 (2009).   DOI
22 S. H. Bae, D. C. Kwon, and N. S. Yoon, J. Korean Vaccum Soc. 17, 426 (2008).   DOI
23 D. P. Lymberopoulos and D. J. Economou, IEEE Transactions on Plasma Science 23, 573 (1995).   DOI
24 J. D. Bukowski, D. B. Graves, and P. Vitello, J. Appl. Phys. 80, 2614 (1996).   DOI
25 P. Subramonium and M. J. Kushner, J. Vac. Sci. Technol. A 20, 313 (2002).   DOI
26 D. B. Hash, D. Bose, M. V. V. S. Rao, B. A. Cruden, M. Meyyappan, and S. P. Sharma, J. Appl. Phys. 90, 2148 (2001).   DOI
27 A. M. Efremov, G. H. Kim, J. G. Kim, A. V. Bogomolov, and C. I. Kim, Microelectronic Engineering 84, 136 (2007).   DOI
28 K. R. Ryan and I. C. Plumb, Plasma Chemistry and Plasma Processing 6, 231 (1986).   DOI
29 T. Kimura and K. Ohe, J. Appl. Phys. 92, 1780 (2002).   DOI
30 E. Meeks and J. W. Shon, IEEE Transactions on Plasma Science 23, 539 (1995).   DOI