• Title/Summary/Keyword: Aqueous extract

Search Result 1,121, Processing Time 0.033 seconds

Flavonol glycosides from the flowers of Carthamus tinctorius and their anti-diabetic activity (잇꽃(Carthamus tinctorius)으로부터 Flavonol glycoside 화합물들의 분리 및 항당뇨 효과)

  • Bo-Ram Choi;Hyoung-Geun Kim;Yoon Hee Nam;Dahye Yoon;Woo Cheol Shin;Jin-Kyu Jang;Yunji Lee;Tong Ho Kang;Nam-In Baek;Dae Young Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.477-483
    • /
    • 2023
  • The flowers of Carthamus tinctorius (Safflower) were extracted with 80% aqueous methanol (CTex) and the concentrates were partitioned into EtOAc (CTE), n-BuOH (CTB), and H2O (CTW) fractions. Repeated silica gel (SiO2) and octadecyl silica gel column chromatographies for the EtOAc and n-BuOH fractions led to isolation of four flavonol glycosides. Nuclear magnetic resornance, infrarad spectroscopy, and mass spectroscopy revealed the chemical structure of the isolated compounds, astragalin (1), isoquercetin (2), nicotiflorin (3), and rutin (4). Quantitative analysis of four isolated compounds in CTex was performed by HPLC. CTex was found to contain 1 at 0.107, 2 at 0.367, 3 at 6.752, and 4 at 0.991 mg/g, respectively. Through this study, an experiment was conducted to evaluate the protective effect on pancreatic islets of the extract, solvent fractions, and all isolated compounds using a zebrafish larvae damaged by alloxan. Pancreatic islet size treated with EtOAc (CTE), n-BuOH (CTB), and H2O (CTW) fractions and compounds 1-4 significantly increased compared to the alloxan-induced group. These results indicate that C. tinctorius flowers and its isolated compounds are used as potential anti-diabetic agents.

Antioxidant and α-glucosidase inhibitory effects of ethanolic extract of Ainsliaea acerifolia and organic solvent-soluble fractions (단풍취 추출물 및 분획물의 항산화 및 α-glucosidase 저해 활성 평가)

  • Lee, Eun-Woo;Kim, Taewan;Kim, Hyun-Seok;Park, Youn-Moon;Kim, Seong-Ho;Im, Moo-Hyeog;Kwak, Jae Hoon;Kim, Tae Hoon
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.275-280
    • /
    • 2015
  • Among the naturally occurring antioxidants, polyphenols are widely distributed in various fruits, vegetables, wines, juices, and plant-based dietary sources and divided into several subclasses that included phenolic acid, flavonoids, stilbenes, and lignans. As part of our continuing search for bioactive food ingredients, the antioxidant and ${\alpha}$-glucosidase inhibitory activities of the aqueous ethanolic extract from the aerial parts of Ainsliaea acerifolia were investigated in vitro. The antioxidant properties were evaluated via radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radicals. In addition, the anti-diabetic effect of A. acerifolia extracts was tested via ${\alpha}$-glucosidase inhibitory assay. Furthermore, the total phenolic contents were determined using a spectrophotometric method. All the tested samples showed dose-dependent radical scavenging and ${\alpha}$-glucosidase inhibitory activities. In particularly, the ${\alpha}$-glucosidase inhibitory and radical scavenging properties of the ethyl acetate (EtOAc)-soluble portion from the aerial parts of the A. acerifolia were higher than those of the other solvent-soluble portions. These results suggest that A. acerifolia could be considered a new potential source of natural antioxidants and antidiabetic ingredients. More systematic investigation of the aerial parts of A. acerifolia will be performed for the further development of anti-oxidative and antidiabetic drugs.

Determination of Fomesafen Residue in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 fomesafen의 분석)

  • Lee, Su-Jin;Hwang, Young-Sun;Kim, Young-Hak;Nam, Mi-Young;Hong, Seung-Beom;Yun, Won-Kap;Kwon, Chan-Hyeok;Do, Jung-A;Im, Moo-Hyeog;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 2010
  • Fomesafen is a selective herbicide, and used to control annual and perennial broad-leaf grass on soybean and fruit fields in USA and China, but not introduced in Korea yet. So, MRL (Maximum Residue Level), and analytical method of fomesafen were not establishment in Korea. Therefore, this experiment was conducted to establish a determination method for fomesafen residue in crops using HPLC-UVD/MS. Fomesafen residue was extracted with acetone from representative samples of five raw products which comprised hulled rice, soybean, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover fomesafen from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The fomesafen was quantitated by HPLC with UVD, using a Shiseido CAPCELL-PAK UG C18 column. The crops were fortified with fomesafen at 3 levels per crop. Mean recovery ratio were ranged from 87.5% for a 0.4 ppm in hulled rice to 102.5% for a 0.4 ppm in apple. The coefficients of variation were ranged from 0.6% for a 2.0 ppm in hulled rice to 7.7% for a 0.04 ppm in green pepper. Quantitative limit of fomesafen was 0.04 mg/kg in representative 5 crop samples. A LC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of fomesafen in agricultural commodities.

Simultaneous Pesticide Analysis Method for Bifenox, Ethalfluralin, Metolachlor, Oxyfluorfen, Pretilachlor, Thenylchlor and Trifluralin Residues in Agricultural Commodities Using GC-ECD/MS (GC-ECD/MS를 이용한 농산물 중 Bifenox, Ethalfluralin, Metolachlor, Oxyfluorfen, Pretilachlor, Thenylchlor 및 Trifluralin의 동시 분석)

  • Ahn, Kyung Geun;Kim, Gi Ppeum;Hwang, Young Sun;Kang, In Kyu;Lee, Young Deuk;Choung, Myoung Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.104-116
    • /
    • 2018
  • BACKGROUND: This experiment was conducted to establish a simultaneous analysis method for 7 kinds of herbicides in 3 different classes having similar physicochemical property as diphenyl ether(bifenox and oxyfluorfen), dinitroaniline (ethalfluralin and trifluralin), and chloroacetamide (metolachlor, pretilachlor, and thenylchlor) in crops using GC-ECD/MS. METHODS AND RESULTS: All the 7 pesticide residues were extracted with acetone from representative samples of five raw products which comprised apple, green pepper, Kimchi cabbage, hulled rice and soybean. The extract was diluted with saline water and directly partitioned into n-hexane/dichloromethane(80/20, v/v) to remove polar co-extractives in the aqueous phase. For the hulled rice and soybean samples, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized Florisil column chromatography. The analytes were separated and quantitated by GLC with ECD using a DB-1 capillary column. Accuracy and precision of the proposed method was validated by the recovery experiment on every crop samples fortified with bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor, and trifluralin at 3 concentration levels per crop in each triplication. CONCLUSION: Mean recoveries of the 7 pesticide residues ranged from 75.7 to 114.8% in five representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation (LOQ) of the analytes were 0.004 (etahlfluralin and trifluralin), 0.008 (metolachlor and pretilachlor), 0.006 (thenylchlor), 0.002 (oxyfluorfen), and 0.02 (bifenox) mg/kg as verified by the recovery experiment. A confirmatory technique using GC/MS with selected-ion monitoring was also provided to clearly identify the suspected residues. Therefore, this analytical method was reproducible and sensitive enough to determine the residues of bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor, and trifluralin in agricultural commodities.

Effect of Phenolic Extract of Dry Leaves of Lespedeza cuneata G. Don on Antioxidant Capacity and Tyrosinase Inhibition (야관문 잎 페놀 추출물의 항산화능 및 미백 효과)

  • Cho, Eun-Jung;Ju, Hyun-Mi;Jeong, Chang-Ho;Eom, Seok-Hyun;Heo, Ho-Jin;Kim, Dae-Ok
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.358-365
    • /
    • 2011
  • Lespedeza cuneata G. Don is a plant commonly grown in Asian countries, which has been widely used as an oriental medicinal herb to treat diabetes, diarrhea and various other inflammatory diseases. The phenolics of dry leaves of L. cuneata G. Don were extracted by using 80% (v/v) aqueous methanol in assistance with homogenization and sonification. The phenolic extract and its five different fractions (n-hexane, chloroform, ethyl acetate, n-butanol, and water) were used to evaluate the levels of total phenolics, total flavonoids, and antioxidant capacity as well as the inhibitory effect of tyrosinase activity. Ethyl acetate fraction (1 g) had the highest levels of total phenolics at 240.8 mg gallic acid equivalents (GAE), total flavonoids as 90.4 mg catechin equivalents (CE) as well as antioxidant capacity at 523.4 mg vitamin C equivalents (VCE) on ABTS assay and 329.5 mg VCE on DPPH assay among fractions. One g of water fraction contained total phenolics at 133.1 mg GAE, total flavonoids at 34.5 mg CE, and antioxidant capacity at 333.4 mg VCE for ABTS assay and 313.2 mg VCE for DPPH assay. Inhibition of tyrosinase activity of water fraction at 300 ${\mu}g{\cdot}mL^{-1}$ was at 47.2% and 21.1% for L-tyrosine and L-DOPA as its substrate, respectively. On the other hand, ethyl acetate fraction at 300 ${\mu}g{\cdot}mL^{-1}$ showed tyrosinase inhibition of 10.2% for L-tyrosine and 11.9% for L-DOPA. These results suggested that the phenolics from dry leaves of L. cuneata G. Don may be utilized as a potent source of antioxidants and skin whitening agents.

Development of Analytical Method for Fenoxycarb, Pyriproxyfen and Methoprene Residues in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 fenoxycarb, pyriproxyfen 및 methoprene의 분석법 확립)

  • Lee, Su-Jin;Kim, Young-Hak;Song, Lee-Seul;Hwang, Yong-Sun;Lim, Jung-Dae;Sohn, Eun-Hwa;Im, Moo-Hyeog;Do, Jung-Ah;Oh, Jae-Ho;Kwon, Ki-Sung;Lee, Joong-Keun;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.3
    • /
    • pp.254-268
    • /
    • 2011
  • Fenoxycarb, pyriproxyfen and methoprene are juvenile hormone mimic insecticide. These insecticides have been widely used for mosquito, fly, scale insects, and Lepidoptera. The purpose of this study was to develop a simultaneous determination procedure of fenoxycarb, pyriproxyfen and methoprene residues in crops using HPLC-UVD/MS. These insecticide residues were extracted with acetone from representative samples of four raw products which comprised brown rice, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and then n-hexane/dichloromethane partition was followed to recover these insecticides from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The analytes were quantitated by HPLC-UVD/MS, using a $C_{18}$ column. The crops were fortified with each insecticide at 3 levels per crop. Mean recovery ratios were ranged from 80.0 to 104.3% in four representative agricultural commodities. The coefficients of variation were less than 4.8%. Quantitative limit of fenoxycarb, pyriproxyfen, and methoprene was 0.04 mg/kg in crop samples. A HPLC-UVD/MS with selected-ion monitoring was also provided to confirm the suspected residues. The proposed simultaneous analysis method was reproducible and sensitive enough to determine the residues of fenoxycarb, pyriproxyfen and methoprene in the agricultural commodities.

The Composition of the Root of Ixeris dentata var. albiflora Nakai. and Cell Viability and DPPH Radical Scavenging Activities of its Extract (흰씀바귀 (고채(苦菜), Ixeris dentata var. albiflora Nakai)뿌리의 성분 분석과 추출물의 세포 생존율 및 DPPH 라디칼 소거 활성)

  • Hong, Seul-Gi;Jeong, Dong-Myong;Kim, Ki-Young;Hwang, Eun-Hee
    • Journal of Nutrition and Health
    • /
    • v.43 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • Ixeris dentata var. albiflora Nakai, a herbal plant, is often used to make a strong stomach as an antiphlogistic used when dyspepsia and to improve appetite in Korea and China. And also it is used for adult diseases such as diabetes and liver diseases as Korean traditional medicine. In this study, the composition and DPPH radical scavenging activities of the root of Ixeris dentata var. albiflora Nakai and its effects on cell viability on vero and chang cells were investigated. Moisture, crude ash, crude protein and crude lipid were 79.14, 2.49, 8.28 and 2.56 g/100 g respectively. The highest mineral content was K. The major free sugars were glucose, fructose and sucrose. Major fatty acid are linoleic acid, palmic acid and linolenic acid. Major amino acids were glutamic acid, arginine and aspartic acid and the total contents of amino acids were 28.12 mg/g. The methanol extracts were further fractionated with n-hexane, chloroform, ethylacetate, butanol and water to get an active fraction. In addition, cell viabilities in each fraction were determined. Methanol extract, butanol, and aqueous fraction showed strong survival rates in vero cell and chang cell viability test, and hexane, chloroform, and ethylacetate fraction were examined for toxin in a cell. The root of Ixeris dentata var. albiflora Nakai had scavenging activities against DPPH radicals in a dose-dependent assay. Ethylacetate fraction's SC50 was $6.8\{\mu}g/mL$, very strong DPPH radical scavenging activities, but water fraction did not show any activity.

Analysis of Fungicide Prochloraz in Platycodi Radix by GC-ECD (GC-ECD를 이용한 한약재 길경(Platycodi Radix) 중 살균제 Prochloraz의 분석)

  • Oh, Gyeong-Seok;Yoon, Myung-sub;Yang, Seung-Hyun;Choi, Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.353-358
    • /
    • 2021
  • BACKGROUND: Prochloraz has been widely used as an imidazole fungicide on fruits and vegetables in Korea. Analytical approaches to evaluate prochloraz residues in herbal medicine are required for their safety management. In this study, we developed a GC-ECD method for quantitative determination of prochloraz in Platycodi Radix. The metabolite 2,4,6-trichlorophenol (2,4,6-T) was used as a target compound to evaluate total prochloraz residues as it is categorized to a representative residue definition of prochloraz. All residues containing 2,4,6-T were converted to 2,4,6-T and subjected to GC-ECD. METHODS AND RESULTS: In order to verify the applicability, the method was optimized for determining prochloraz and it metabolite 2,4,6-T in Platycodi Radix. Prochloraz and its metabolite 2,4,6-T residuals were extracted using acetone. The extract was diluted with and partitioned directly into dichloromethane to remove polar co-extractives in the aqueous phase. The extract was decomposed to 2,4,6-T, and then the partitioned ion-associate was finally purified by optimized aminopropyl solid-phase extraction (SPE). The limits of quantitation of the method (MLOQs) were 0.04 mg/kg and 0.02 mg/kg, respectively for prochloraz and 2,4,6-T, considering the maximum residue level (MRL) of prochloraz as 0.05 mg/kg in Platycodi Radix. Recovery tests were carried out at two levels of concentration (MLOQ, 10 MLOQ) and resulted in good recoveries (82.1-89.7%). Good reproducibilities were obtained (coefficient of variation < 2.8%), and the linearities of calibration curves were reasonable (r2 > 0.9986) in the range of 0.005-0.5 ㎍/mL. CONCLUSION(S): The method developed in this study was successfully validated to meet the guidelines required for quantitative determination of pesticides in herbal medicine. Thus, the method could be useful to monitor prochloraz institutionally in herbal medicine.

A Study on Cation Extraction and Impurity Separation in Slag (슬래그 내 양이온 추출 및 불순물 분리 연구)

  • Lee, Ye Hwan;Kang, Hyerin;Jang, Younghee;Lee, Si-Jin;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.311-315
    • /
    • 2019
  • The cation extraction and impurity separation were studied in order to investigate the recyclability of a slag produced from the steel refinery industry. Two types of slag (Slag-A, B) were collected and characterized in this study. The initial characterization by X-ray diffraction (XRD) and X-ray fluorescence (XRF) confirmed the existence of various kinds of ions in the slag such as Ca2+ (30 ~ 40%), Fe3+ (20 ~ 30%), Si4+ (15%), Al3+ (10%), Mn2+ (7%), and Mg2+ (3 ~ 5%). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis on the extracted slag using 2 M HCl as a solvent indicated that a higher concentration of Ca2+ was extracted as the S/L ratio was increased. The Ca2+ extraction concentration were found to be 8,940 mg L-1 (Slag-A) and 10,690 (Slag-B) mg L-1 when the S/L ratio for Ca2+ extraction was 0.1. However, the extract was strongly acidic ( < pH 1) at 0.1 S/L. Also the other ions (impurities) were extracted simultaneously in addition to Ca2+. To increase the purity of Ca2+ in order to transform the slag to a high value resource, a pH-swing was conducted. The impurities tended to precipitate at higher rate as the pH was increased. Notably, the Ca2+ rapidly precipitated above a certain pH and at a pH of 10.5, while the selectivity of Ca2+ was over 99%. It is expected that the aqueous solution in which high contents of Ca2+ was selectively dissolved in this study would be suitable for the carbonation process for reducing CO2 and for the production of calcium carbonate.

Characterization of a Psychrophilic Metagenome Esterase EM2L8 and Production of a Chiral Intermediate for Hyperlipemia Drug (메타게놈유래의 저온성 에스터라제 EM2L8의 효소적 특성과 이를 활용한 고지혈증 치료제 키랄소재의 생산)

  • Jung, Ji-Hye;Choi, Yun-Hee;Lee, Jung-Hyun;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.118-124
    • /
    • 2009
  • Esterase EM2L8 gene isolated from deep sea sediment was expressed in Escherichia coli BL21 (DE3) and the esterase activity of the cell-free extract was assayed using p-nitrophenyl butyrate-spectrophotometric method. Its optimum temperature was $40-45^{\circ}C$ and 45% activity of the maximum activity was retained at $15^{\circ}C$. The activation energy at $15-45^{\circ}C$ was calculated to be 4.9 kcal/mol showing that esterase EM2L8 was a typical cold-adapted enzyme. Enzyme activity was maintained for 6 h and 4 weeks at $30^{\circ}C$ and $4^{\circ}C$, respectively. When each ethanol, methanol, and acetone was added to the reaction mixture to 15% concentration, enzyme activity was maintained. In the case of DMSO, enzyme activity was kept up to 40% concentration. (S)-4-Chloro-3-hydroxy butyric acid is a chiral intermediate for the synthesis of Atorvastatin, a hyperlipemia drug. When esterase EM2L8 (40 U) was added to buffer solution (1.2 mL, pH 9.0) containing ethyl-(R,S)-4-chloro-3-hydroxybutyrate (38 mM), it was hydrolyzed into 4-chloro-3-hydroxy butyric acid with a rate of $6.8\;{\mu}mole/h$. The enzyme hydrolyzed (S)-substrate more rapidly than (R)-substrate. When conversion yield was 80%, e.e.s value was 40%. When DMSO was added, hydrolysis rate increased to $10.4\;{\mu}mole/h$. The plots of conversion yield vs e.e.s in the presence or absence of DMSO were almost same, implying that the reaction enantioselectivity was not changed by the addition of DMSO. Taken together, esterase EM2L8 had high activity and stability at low temperatures as well as in various organic solvents/aqueous solutions. These properties suggested that it could be used as a biocatalyst in the synthesis of useful pharmaceuticals.