Acknowledgement
본 성과물은 농촌진흥청 공동연구사업(RS-2019-RD008923)의 지원에 의해 이루어진 것입니다. 지원에 감사드립니다
References
- Baek NI, Kim YH, Ahn EM, Bang MH, Nam JY, Kwon BM (1998) Isolation of biologically active compounds from the flower petals of Carthamus tinctorius L. J Korean Soc Agri Chem Biotechnol 41: 197-200
- Park YH, Lee CS (2011) Efficacy of Safflower on the acne skin and its application for facial cleansing biomedical material. J Korean Chem Soc 55: 400-404. doi: 10.5012/jkcs.2011.55.3.400
- Kim JH, Kim JK, Kang WW, Ha YS, Choi SW, Moon KD (2003) Chemical compositions and DPPH radical scavenger activity in different section of safflower. J Korean Soc Food Sci Nutr 32: 733-738. doi: 10.3746/jkfn.2003.32.5.733
- Xu S, Qiu S, Zhang S (1984) Studies on the antiinflammatory principles in Carthamus tinctorius. Zhongyao Tongbao 9: 31-32
- Kim EO, Oh JH, Lee SK, Lee JY, Choi SW (2007) Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Sci Biotechnol 16: 71-77
- Paramesha M, Ramesh CK, Krishna V, Kumar YSR, Parvathi KMM (2011) Hepatoprotective and in vitro antioxidant effect of Carthamus tinctorius L, var Annigeri-2-, an oil-yielding crop, against CCl4-induced liver injury in rats. Pharmacog Mag 7: 289-297. doi: 10.4103/0973-1296.90406
- Zhou FR, Zhao MB, Tu PF (2009) Simultaneous determination of four nucleosides in Carthamus tinctorius L. and safflower injection using highperformance liquid chromatography. J Chin Pharm Sci 18: 326-330
- Li L, Liu J, Li X, Guo Y, Fan Y, Shu H, Wu G, Peng C, Xiong L (2022) Sesquiterpenoids from the florets of Carthamus tinctorius (Safflower) and their anti-atherosclerotic activity. Nutrients 14: 5348. doi: 10.3390/nu14245348
- Baek SC, Yi SA, Lee BS, Yu JS, Kim JC, Pang C, Jang TS, Lee J, Kim KH (2021) Anti-adipogenic polyacetylene glycosides from the florets of safflower (Carthamus tinctorius). Biomedicines 9: 91. doi: doi.org/10.3390/biomedicines9010091
- Wu SH, Zheng CP, Chen SY, Cai XP, Shi YJ, Liu Z, Li ZY (2014) Anti-thrombotic effect of Carthamus tinctorius Linn extracts in rats. Trop J Pharm Res 13: 1637-1642. doi: 10.4314/tjpr.v13i10.10
- Zhang LL, Tian K, Tang ZH, Chen XJ, BianZX, Wang YT, Lu JJ (2016) Phytochemistry and pharmacology of Carthamus tinctorius L. Am J Chinese Med 44: 197-226. doi: 10.1142/S0192415X16500130
- Lee YG, Lee J, Lee NY, Kim NK, Jung DW, Wang W, Kim Y, Kim HG, Nguyen TN, Park H, Baek NI (2017) Evaluation for the flowers of compositae plants as whitening cosmetics functionality. J Appl Biol Chem 60: 511. doi: 10.3839/jabc.2017.002
- Ko JH, Nam YH, Joo SW, Kim HG, Lee YG, Kang TH, Baek NI (2018) Flavonoid 8-O-Glucuronides from the Aerial Parts of Malva verticillata and Their Recovery Effects on Alloxan-Induced Pancreatic Islets in Zebrafish. Molecules 23: 833-847. doi: 10.3390/molecules23040833
- Maleki SJ, Crespo JF, Cabanillas B (2019) Anti-inflammatory effects of flavonoids. Food Chem 299: 125124. doi: 10.1016/j.foodchem.2019.125124
- Wang Y, Chen P, Tang C, Wang Y, Li Y, Zhang H (2014) Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L. J Ethnopharmacol 151: 944-950. doi: 10.1016/j.jep.2013.12.003
- Li HX, Han SY, Wang XW, Ma X, Zhang K, Wang L, Ma ZZ, Tu PF (2009) Effect of the carthamins yellow from Carthamus tinctorius L. on hemorheological disorders of blood stasis in rats. Food Chem Toxicol 47: 1797-1802. doi: 10.1016/j.fct.2009.04.026
- Kim HG, Jung YS, Oh SM, Oh HJ, Ko JH, Kim DO, Kang SC, Lee YG, Lee DY, Baek NI (2020) Coreolanceolins A-E, New Flavanones from the Flowers of Coreopsis lanceolata and Their Antioxidative and Anti-inflammatory Effects. Antioxidants 9: 539-555. doi: 10.3390/antiox9060539
- Kim HG, Nam YH, Jung YS, Oh SM, Nguyen TN, Lee MH, Kim DO, Kang TH, Lee DY, Baek NI (2021) Aurones and flavonols from Coreopsis lanceolata L. flowers and their anti-oxidant, pro-inflammatory inhibition effects, and recovery effects on alloxan-induced pancreatic islets in zebrafish. Molecules 26: 6098. doi: 10.3390/molecules26206098
- Pei J, Dong P, Wu T, Zhao L, Fang X, Cao F, Tang F, Yue Y (2016) Metabolic engineering of Escherichia coli for astragalin biosynthesis. J Agri Food Chem 64: 7966-7972. doi: 10.1021/acs.jafc.6b03447
- Kato K, Ninomiya M, Tanaka K, Koketsu M (2016) Effects of functional groups and sugar composition of quercetin derivatives on their radical scavenging properties. J Nat Prod 79: 1808-1814. doi: 10.1021/acs.jnatprod.6b00274
- Chaurasia N, Wichtl M (1987) Flavonol glycosides from Urtica dioica. Planta Med 53: 432-434 https://doi.org/10.1055/s-2006-962765
- Beck MA, Haberlein H (1998) Flavonol glycosides from Eschscholtzia californica. Phytochem 50: 329-332. doi: 10.1016/S0031-9422(98)00503-2
- Seo KH, Nam YH, Kim YE, Hong EK, Hong BN, Kang TH, Baek NI (2015) Recovery effect of flavonoids from Morus alba fruits on alloxan-induced pancreatic islet in Zebrafish (Dinio rerio). J Appl Biol Chem 58: 51-54. doi: 10.3839/jabc.2015.009
- Liao H, Banbury L, Liang H, Wang X, Lu X, Hu L, Wu J (2014) Effect of Honghua (Flos Carthami) on nitric oxide production in RAW 264.7 cells and α-glucosidase activity. J Tradit Chin Med 34: 362-368. doi: 10.1016/S0254-6272(14)60103-5