• Title/Summary/Keyword: Approximation matrix method

Search Result 159, Processing Time 0.02 seconds

Computation of Wave Propagation by Scatter Method Associated with Variational Approximation (변분근사식과 연계된 산란체법에 의한 파랑변형 계산)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.553-563
    • /
    • 2008
  • If an arbitrary topography is approximated to a number of vertical steps, both variational approximation and eigenfunction expansion method can be used to compute linear wave transformation over the bottom. In this study a scatterer method associated with variational approximation is proposed to calculate reflection and transmission coefficients. Present method may be shown to be more simple and direct than the successive-application-matrix method by O'Hare and Davies. And Several numerical examples are given which are in good agreement with existing results.

Explicit Matrix Expressions of Progressive Iterative Approximation

  • Chen, Jie;Wang, Guo-Jin
    • International Journal of CAD/CAM
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Just by adjusting the control points iteratively, progressive iterative approximation (PIA) presents an intuitive and straightforward scheme such that the resulting limit curve (surface) can interpolate the original data points. In order to obtain more flexibility, adjusting only a subset of the control points, a new method called local progressive iterative approximation (LPIA) has also been proposed. But to this day, there are two problems about PIA and LPIA: (1) Only an approximation process is discussed, but the accurate convergence curves (surfaces) are not given. (2) In order to obtain an interpolating curve (surface) with high accuracy, recursion computations are needed time after time, which result in a large workload. To overcome these limitations, this paper gives an explicit matrix expression of the control points of the limit curve (surface) by the PIA or LPIA method, and proves that the column vector consisting of the control points of the PIA's limit curve (or surface) can be obtained by multiplying the column vector consisting of the original data points on the left by the inverse matrix of the collocation matrix (or the Kronecker product of the collocation matrices in two direction) of the blending basis at the parametric values chosen by the original data points. Analogously, the control points of the LPIA's limit curve (or surface) can also be calculated by one-step. Furthermore, the $G^1$ joining conditions between two adjacent limit curves obtained from two neighboring data points sets are derived. Finally, a simple LPIA method is given to make the given tangential conditions at the endpoints can be satisfied by the limit curve.

AN ITERATIVE ALGORITHM FOR SOLVING THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB+CYD=E

  • Shen, Kai-Juan;You, Chuan-Hua;Du, Yu-Xia
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1233-1245
    • /
    • 2008
  • In this paper, an iterative method is proposed to solve the least-squares problem of matrix equation AXB+CYD=E over unknown matrix pair [X, Y]. By this iterative method, for any initial matrix pair [$X_1,\;Y_1$], a solution pair or the least-norm least-squares solution pair of which can be obtained within finite iterative steps in the absence of roundoff errors. In addition, we also consider the optimal approximation problem for the given matrix pair [$X_0,\;Y_0$] in Frobenius norm. Given numerical examples show that the algorithm is efficient.

  • PDF

Wave Propagation Models Due to Topographic Change: Scatterer Method and Transfer Matrix Method (지형변화에 의한 파랑전파모형: 산란체법과 변환행렬법)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.163-170
    • /
    • 2010
  • Both scatterer method and transfer matrix method are compared to analyze their characteristics, which are wave propagation models due to topographic change based on plane wave approximation. Results from the scatterer method are closer to the results obtained by the more accurate existing models and it is appraised that the scatterer method gives the clearer explanation about physical process involved in the wave transformation. Since both methods have analytical solutions, in the computational point of view they are very fast and easy to be implemented. Both methods give a good prediction for wave scattering by relatively simple bedform.

AN ALGORITHMIC APPROACH TO THE MARKOV CHAIN WITH TRANSITION PROBABILITY MATRIX OF UPPER BLOCK-HESSENBERG FORM

  • Shin, Yang-Woo;Pearce, C.E.M.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.403-426
    • /
    • 1998
  • We present an algorithm to find an approximation for the stationary distribution for the general ergodic spatially-inhomogeneous block-partitioned upper Hessenberg form. Our approximation makes use of an associated upper block-Hessenberg matrix which is spa-tially homogeneous except for a finite number of blocks. We treat the MAP/G/1 retrial queue and the retrial queue with two types of customer as specific instances and give some numerical examples. The numerical results suggest that our method is superior to the ordinary finite-truncation method.

Approximate Analysis of a CONWIP system with Compound Poisson Demands (Compound Poisson 수요를 갖는 CONWIP 시스템의 근사적 분석)

  • 이정은;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.153-168
    • /
    • 1998
  • In this study we consider a CONWIP system in which the processing times at each station follow an exponential distribution and the demands for the finished Products arrive according to a compound Poisson process. The demands that are not satisfied instantaneously are assumed to be backordered. For this system we develop an approximation method to obtain the performance measures such as steady state probabilities of the number of parts at each station, the proportion of backordered demands, the average number of backordered demands and the mean waiting time of a backordered demand. For the analysis of the proposed CONWIP system, we model the CONWIP system as a closed queueing network with a synchronization station and analyze the closed queueing network using a product form approximation method. A matrix geometric method is used to solve the subnetwork in the application of the product-form approximation method. To test the accuracy of the approximation method, the results obtained from the approximation method were compared with those obtained by simulation. Comparisons with simulation have shown that the approximate method provides fairly good results.

  • PDF

Long-Term Prediction of Radionuclide Leaching from Waste Matrix by Finite-Slab Approximation Method (유한 격판 근사 방법에 의한 고화체로부터의 방사성 핵종의 용출율 장기 예측)

  • Doh, Jeong-Yeul;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.197-202
    • /
    • 1988
  • A finite slab approximation method was developed to predict the long-term teachability. It is based on the assumption that the diffusional characteristics of radionuclides in a waste matrix are not dependent on matrix geometry but dependent on volume to surface ratio V/S) and diffusion coefficient. Consequently it can be expressed as the solution of the equations obtained from a finite slab with an equal V/S ratio (imaginary diffusion length). The calculational results by the finite slab approximation method have been compared with the results obtained for finite cylinder and sphere with corresponding diffusional analysis. The results of this simple model have showed a good agreement and presented a general applicability for the long-term prediction of the radionuclide leaching behavior.

  • PDF

A HOMOTOPY CONTINUATION METHOD FOR SOLVING A MATRIX EQUATION

  • Li, Jing;Zhang, Yuhai
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.327-342
    • /
    • 2018
  • In this paper, a homotopy continuation method for obtaining the unique Hermitian positive definite solution of the nonlinear matrix equation $X-{\sum_{i=1}^{m}}A^{\ast}_iX^{-p_i}A_i=I$ with $p_i$ > 1 is proposed, which does not depend on a good initial approximation to the solution of matrix equation.

Comparison of Matrix Exponential Methods for Fuel Burnup Calculations

  • Oh, Hyung-Suk;Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7.

  • PDF