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A HOMOTOPY CONTINUATION METHOD FOR SOLVING A

MATRIX EQUATION

Jing Li and Yuhai Zhang

Abstract. In this paper, a homotopy continuation method for obtaining

the unique Hermitian positive definite solution of the nonlinear matrix
equation X −

∑m
i=1 A

∗
iX

−piAi = I with pi > 1 is proposed, which does

not depend on a good initial approximation to the solution of matrix
equation.

1. Introduction

In this paper we investigate the Hermitian positive definite (HPD) solutions
of the nonlinear matrix equation

(1.1) X −
m∑
i=1

A∗iX
−piAi = I,

where pi > 1 (i = 1, 2, . . . ,m), A1, A2, . . . , Am are n × n nonsingular complex
matrices, I is an n × n identity matrix and m is a positive integer. Here, A∗i
denotes the conjugate transpose of the matrix Ai.

When m = 1, this type of nonlinear matrix equations arises in Nano re-
search, the analysis of ladder networks, dynamic programming, control theory,
stochastic filtering, statistics and many other applications (see [1,5,6,8,18,19]).
There were some contributions in the literature to the solvability, numerical so-
lutions, and perturbation analysis (see [7, 9, 10,13,14,17] and therein).

When m > 1, Eq. (1.1) is recognized as playing an important role in solving
a system of linear equations. For example, in many physical calculations, one
must solve the system of linear equation

Mx = f,
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where x and f are column vectors, and

M =


I 0 · · · 0 A1

0 I · · · 0 A2

...
...

. . .
...

...
0 0 · · · I Am
A∗1 A∗2 · · · A∗m −I


arises in a finite difference approximation to an elliptic partial differential equa-

tion (for more information, refer to [3]). We can rewrite M as M = M̃ + D,
where

M̃ =


Xp1 0 ··· 0 A1

0 Xp2 ··· 0 A2

...
...

. . .
...

...
0 0 ··· Xpm Am

A∗
1 A∗

2 ··· A∗
m −I

 , D =


I−Xp1 0 ··· 0 0

0 I−Xp2 ··· 0 0

...
...

. . .
...

...
0 0 ··· I−Xpm 0
0 0 ··· 0 0

 .

M̃ can be factored as

M̃ =


I 0 ··· 0 0
0 I ··· 0 0
...

...
. . .

...
...

0 0 ··· I 0
A∗

1X
−p1 A∗

2X
−p2 ··· A∗

mX
−pm I



Xp1 0 ··· 0 A1

0 Xp2 ··· 0 A2

...
...

. . .
...

...
0 0 ··· Xpm Am

0 0 ··· 0 −X


if and only if X is a solution of equation X −

∑m
i=1A

∗
iX
−piAi = I. In the last

few years, matrix equation (1.1) was investigated in some special cases. When
0 < |pi| < 1, Duan-Liao-Tang [4] obtained the existence of a unique HPD
solution by fixed point theorems for monotone and mixed monotone operators
in a normal cone. Lim [12] derived the existence of a unique HPD solution by
using a strict contraction for the Thompson metric on the open convex cone
of positive definite matrices. When pi > 0, Li-Zhang [11] derived a sufficient
condition for the existence of a unique HPD solution by Banach contraction
mapping principle.

The convergence of many iterative methods for the solution of matrix equa-
tions usually depends on a good initial approximation to the solution. Cor-
respondingly, these convergence results only guarantee the existence of a well-
defined convergent sequence of iterates for very restricted sets of starting ma-
trices. To overcome the local convergence of iterative processes, we will use
the homotopy continuation method (see [2] for more details) and the technique
developed in [14] for obtaining the unique HPD solution of (1.1) with pi > 1 in
this paper. Note that the matrix equation (1.1) does not always have unique
Hermitian positive definite solution in the case pi > 1. We will derived some
necessary conditions and sufficient conditions for the existence and uniqueness
of Hermitian positive definite solutions to the matrix equation (1.1) in the case
pi > 1, which differ from the results in [11].

The rest of the paper is organized as follows. In Section 2, we give some
preliminary knowledge that will be used to develop this work. In Section 3,
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we derive some necessary conditions and sufficient conditions for the existence
and uniqueness of Hermitian positive definite solutions to the equation (1.1).
In Section 4, we discuss the homotopy continuation methods for obtaining the
unique Hermitian positive definite solution to the equation (1.1).

The following notations are used throughout this paper. We denote by
Cn×n, Hn×n, Pn×n and Un×n the set of all n×n complex matrices, Hermitian
matrices, Hermitian positive definite matrix and unitary matrices, respectively.
For column vectors a1, a2, . . . , an, A = (a1, . . . , an) = (aij) ∈ Cn×n and a
matrix B, A ⊗ B = (aijB) is a Kronecker product, and vecA is a vector
defined by vecA = (aT1 , . . . , a

T
n )T . The symbol ‖ · ‖ stands for the spectral

norm. We denote by λ1(M) and λn(M) the maximal and minimal eigenvalues
of M , respectively. For X,Y ∈ Hn×n, we write X ≥ Y (X > Y ) if X − Y is a
Hermitian positive semi-definite (definite) matrix. For A,B ∈ Hn×n, the sets
[A,B], (A,B) and (A,B] are defined by [A,B] = {X ∈ Hn×n|A ≤ X ≤ B},
(A,B) = {X ∈ Hn×n|A < X < B} and (A,B] = {X ∈ Hn×n|A < X ≤ B},
respectively.

2. Preliminaries

In this section, we present some lemmas that will be needed to develop this
paper.

Lemma 2.1 ([15, Lemma 2]). (i) If X ∈ Pn×n and r > 0, then X−r =
1

Γ(r)

∫∞
0
e−sXsr−1ds.

(ii) If A,B ∈ Cn×n, then eA+B − eA =
∫ 1

0
e(1−t)ABet(A+B)dt.

Lemma 2.2 ([16, Theorem 3.2.1]). If A, T ∈ Cn×n and T is nonsingular, then

eT
−1AT = T−1eAT.

Lemma 2.3 ([16, Theorem 1.9.1]). Let A ∈ Cm×n, B ∈ Cp×q, C ∈ Cn×k, D ∈
Cq×r. Then

(i) (A⊗B)(C ⊗D) = (AC)⊗ (BD);
(ii) (A⊗B)∗ = A∗ ⊗B∗.

Lemma 2.4 ([16, Lemma 1.9.1]). Let A ∈ Cl×m, X ∈ Cm×n, B ∈ Cn×k. Then

vec(AXB) = (BT ⊗A) · vecX.

Lemma 2.5 ([20, Theorem 6.19]). Let A ∈ Cm×m and B ∈ Cn×n with eigen-
values λi and µj , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, respectively. Then the eigen-
values of A⊗B are λiµj , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Lemma 2.6 ([11, Theorem 3.1, Theorem 3.2]). The nonlinear matrix equation
X −

∑m
i=1A

∗
iX
−piAi = Q (pi > 0) always has Hermitian positive definite

solutions. Moreover, if X is a Hermitian positive definite solution of X −∑m
i=1A

∗
iX
−piAi = Q (pi > 0), then Q ≤ X ≤ Q+

∑m
i=1A

∗
iAi/λ

pi
min(Q), where

Q is an n× n Hermitian positive definite matrix.
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Lemma 2.7. Suppose that m ≥ 1, p > 1 and 1 < x, y < mp
mp−1 . Then

0 < f(x, y) =

√
(x− 1)(y − 1)(xp − yp)

(x− y)x
p
2 y

p
2

<
1

m
.

Proof. Let g1(x) = (x−1)1/2

xp/2 , 1 < x < mp
mp−1 , p > 1. A calculation gives

that g′1(x) = x
p
2
−1((1−p)x+p)

2
√
x−1xp . Note that 1 < x < mp

mp−1 and p > 1. Then

(1− p)x+ p > (m−1)p
mp−1 ≥ 0. Therefore g′1(x) ≥ 0, 1 < x < mp

mp−1 , which implies

g1(x) is monotonically increasing on (1, mp
mp−1 ). It follows that

(2.1) g1(x) < g1

(
mp

mp− 1

)
=

√
(mp− 1)p−1

(mp)p
, 1 < x <

mp

mp− 1
.

Let g2(x) = xp, 1 < x < mp
mp−1 , p > 1. By the mean value theorem, there

exists ξ ∈ (1, mp
mp−1 ) such that

(2.2)
g2(x)− g2(y)

x− y
= g′2(ξ) < p

(
mp

mp− 1

)p−1

, x, y ∈ (1,
mp

mp− 1
).

Combining (2.1) and (2.2), we have

0 < f(x, y) = g1(x) · g1(y) · g2(x)− g2(y)

x− y
<

1

m
.

�

3. The existence and uniqueness of HPD solutions

In this section, some necessary conditions and sufficient conditions for the
existence and uniqueness of HPD solutions of (1.1) are given.

Theorem 3.1. Eq. (1.1) has a HPD solution if and only if there exist Qi ∈
Cn×n, i = 1, 2, . . . ,m, P ∈ Un×n, and diagonal matrices Γ,Λ > 0 such that

Ai = P ∗Γ
pi
2 QiΛP, i = 1, 2, . . . ,m,

where Γ − Λ2 = I and
∑m
i=1Q

∗
iQi = I. In this case, X = P ∗ΓP is a HPD

solution of Eq. (1.1).

Proof. If Eq. (1.1) has a HPD solution X, it follows from the spectral decom-
position theorem that there exist P ∈ Un×n and a diagonal matrix Γ > 0 such
that X = P ∗ΓP. Then Eq. (1.1) can be rewritten as

(3.1) P ∗ΓP −
m∑
i=1

A∗iP
∗Γ−piPAi = I.

Multiplying the left side of Eq. (3.1) by P and the right side by P ∗, we have

(3.2)

m∑
i=1

PA∗iP
∗Γ−piPAiP

∗ = Γ− I.
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Note that Ai (i = 1, 2, . . . ,m) are nonsingular matrices. Then X > I, which
implies

(3.3) Γ > I.

It follows that Eq. (3.2) will be turned into the following form

(3.4)

m∑
i=1

(Γ− I)−
1
2PA∗iP

∗Γ
−pi

PAiP
∗(Γ− I)−

1
2 = I.

Let Λ = (Γ − I)
1
2 , Qi = Γ−

pi
2 PAiP

∗Λ−1. It is easy to verify that Γ − Λ2 = I

and Ai = P ∗Γ
pi
2 QiΛP . From Eq. (3.4) it follows that

∑m
i=1Q

∗
iQi = I.

Conversely, assume there exist P ∈ Un×n, Qi ∈ Cn×n,
∑m
i=1Q

∗
iQi = I and

diagonal matrices Γ,Λ > 0, Γ− Λ2 = I such that

Ai = P ∗Γ
pi
2 QiΛP, i = 1, 2, . . . ,m.

Let X = P ∗ΓP , then X is a HPD matrix, and it follows that

X −
m∑
i=1

A∗iX
−piAi = P ∗ΓP −

m∑
i=1

P ∗Λ∗Q∗Γ
pi
2 P (P ∗ΓP )−piP ∗Γ

pi
2 QiΛP

= P ∗ΓP −
m∑
i=1

P ∗ΛQ∗iQiΛP = P ∗(Γ− Λ2)P = I,

which implies X is a solution of Eq. (1.1). �

Theorem 3.2. If Eq. (1.1) has HPD solutions on (I, mq
mq−1I), then the HPD

solution is unique, where q = max1≤i≤m{pi}.

Proof. Suppose that X,Y are two HPD solutions of (1.1) such that I < X, Y <
mq
mq−1I, we will prove X = Y.

Since X is a HPD solution of (1.1), according to Theorem 3.1, there exist
P1 ∈ Un×n, Qi ∈ Cn×n, i = 1, 2, . . . ,m and diagonal matrices Γ1,Λ1 > 0 such
that

(3.5) Ai = P ∗1 Γ
pi/2
1 QiΛ1P1, i = 1, 2, . . . ,m,

where

(3.6)

m∑
i=1

Q∗iQi = I and Γ1 − Λ2
1 = I.

In this case, X = P ∗1 Γ1P1, where Γ1 = diag(λ11, λ12, . . . , λ1n) with {λ1j} the
eigenvalues of X.

Similarly, since Y is a HPD solution of Eq. (1.1), there exist P2 ∈ Un×n,
Ui ∈ Cn×n, i = 1, 2, . . . ,m and diagonal matrices Γ2,Λ2 > 0 such that

(3.7) Ai = P ∗2 Γ
pi/2
2 UiΛ2P2, i = 1, 2, . . . ,m,
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where

(3.8)

m∑
i=1

U∗i Ui = I and Γ2 − Λ2
2 = I.

In this case, Y = P ∗2 Γ2P2, where Γ2 = diag(λ21, λ22, . . . , λ2n) with {λ2j} the
eigenvalues of Y.

According to Lemma 2.1, Lemma 2.2, (3.5) and (3.7), we have

X − Y =

m∑
i=1

A∗i (X
−pi − Y −pi)Ai(3.9)

= −
m∑
i=1

A∗i
Γ(pi)

∫ ∞
0

∫ 1

0

e−(1−t)sY (X − Y )e−tsXdtspidsAi

= −
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

P ∗2 Λ2U
∗
i Γ

pi
2

2 e−(1−t)sΓ2

P2(X − Y )P ∗1 e
−tsΓ1Γ

pi
2

1 QiΛ1P1dts
pids.

Let

(3.10) W = P2(X − Y )P ∗1 .

Then Eq. (3.9) can be rewritten as
(3.11)

W = −
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

Λ2U
∗
i Γ

pi/2
2 e−(1−t)sΓ2We−tsΓ1Γ

pi/2
1 QiΛ1dts

pids.

From (3.11), Lemmas 2.3 and 2.4, it follows that

vecW =−
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

(e−tsΓ1Γ
pi/2
1 QiΛ1)T

(3.12)

⊗ (Λ2U
∗
i Γ

pi/2
2 e−(1−t)sΓ2)dtspids · vecW

= −
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

(Λ1Q
T
i Γ

pi/2
1 e−tsΓ1)

⊗ (Λ2U
∗
i Γ

pi/2
2 e−(1−t)sΓ2)dtspids · vecW

= −
m∑
i=1

1

Γ(pi)
(Λ1 ⊗ Λ2)(QTi ⊗ U∗i )(Γ

pi/2
1 ⊗ Γ

pi/2
2 )

∫ ∞
0

∫ 1

0

e−tsΓ1

⊗ e−(1−t)sΓ2dtspids · vecW.

Assume that

Λ1 = diag(σ11, σ12, . . . , σ1n), Λ2 = diag(σ21, σ22, . . . , σ2n).



A HOMOTOPY CONTINUATION METHOD 333

According to (3.3), (3.6) and (3.8) , we have

(3.13) 0 < σ1j =
√
λ1j − 1, 0 < σ2j =

√
λ2j − 1, j = 1, 2, . . . , n.

Let

B = Λ1 ⊗ Λ2, Ji = QTi ⊗ U∗i ,

(3.14)

Ci =
(Γ
pi/2
1 ⊗ Γ

pi/2
2 )

Γ(pi)

∫ ∞
0

∫ 1

0

e−tsΓ1 ⊗ e−(1−t)sΓ2dtspids, i = 1, 2, . . . ,m.

Then (3.12) can be rewritten as

(3.15) vecW +B

m∑
i=1

JiCi · vecW = 0.

By Lemma 2.5 and (3.13), we have

B = (σ1l · Λ2)n2×n2 = diag(σ1l · σ2j)n2×n2

= diag(
√
λ1l − 1 ·

√
λ2j − 1)n2×n2 , l, j = 1, 2, . . . , n,(3.16)

where

diag(
√
λ1l − 1 ·

√
λ2j − 1)n2×n2

=



σ11σ21 0 · · · 0 · · · · · · 0 · · · 0
0 σ11σ22 · · · 0 · · · · · · 0 · · · 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · σ11σ2n · · · · · · 0 · · · 0
...

...
...

...
. . .

...
...

...
...

0 0 · · · · · · · · · σ1nσ21 0 · · · 0

0 0 · · · · · ·
... 0 σ1nσ22 · · · 0

...
...

...
...

...
...

...
. . .

...
0 0 · · · · · · · · · 0 0 · · · σ1nσ2n


,

and
0 < σ1l =

√
λ1l − 1, 0 < σ2j =

√
λ2j − 1, l, j = 1, 2, . . . , n.

Ci =
(Γ
pi/2
1 ⊗ Γ

pi/2
2 )

Γ(pi)

∫ ∞
0

∫ 1

0

e−tsΓ1 ⊗ e−(1−t)sΓ2dtspids,

(3.17)

= diag

(
λ
pi/2
1l · λpi/22j · 1

Γ(pi)

∫ ∞
0

∫ 1

0

e−tsλ1l · e−(1−t)sλ2jdtspids

)
n2×n2

= diag

(
λpi2j − λ

pi
1l

(λ2j − λ1l)λ
pi/2
1l λ

pi/2
2j

)
n2×n2

, i = 1, 2, . . . ,m, l, j = 1, 2, . . . , n.
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Note that B is nonsingular. Multiplying the left side of Eq. (3.15) by B−1, we
have

(3.18) B−1 · vecW +

m∑
i=1

JiCi · vecW = (I +

m∑
i=1

JiCiB )B−1 · vecW = 0.

A combination of (3.14) and Lemma 2.3 gives

J∗i Ji = (QTi ⊗ U∗i )∗(QTi ⊗ U∗i ) = (Qi ⊗ Ui)(QTi ⊗ U∗i )

= (QiQ
T
i )⊗ (UiU

∗
i ) = (QiQ∗i )⊗ (UiU

∗
i ).

It follows (3.6), (3.8), and Lemma 2.5 that 0 < ||Ji|| ≤ 1. Then

(3.19)

∥∥∥∥∥
m∑
i=1

JiCiB

∥∥∥∥∥ ≤
m∑
i=1

‖CiB‖.

By the hypothesis of the theorem, we have I < X, Y < mq
mq−1I, which implies

that 1 < λ1l, λ2j <
mq
mq−1 <

mpi
mpi−1 , i = 1, 2, . . . ,m, l, j = 1, 2, . . . , n. Then it

follows from (3.17) and (3.16) that

(3.20)

m∑
i=1

‖ CiB ‖ =

m∑
i=1

max
l,j


√
λ1l − 1

√
λ2j − 1(λpi2j − λ

pi
1l )

(λ2j − λ1l)λ
pi
2

1l λ
pi
2

2j


=

m∑
i=1

max
l,j
{f(λ1l, λ2j)},

where f(x, y) is defined in Lemma 2.7. A combination of Lemma 2.7, (3.19)
and (3.20) gives that ∥∥∥∥∥

m∑
i=1

JiCiB

∥∥∥∥∥ < m · 1

m
= 1,

which implies I +
∑m
i=1 JiCiB is nonsingular. It follows (3.18) that vecW = 0.

By (3.10), we have X = Y. �

Theorem 3.3. If λ1(
∑m
i=1A

∗
iAi) <

1
mq−1 , then Eq. (1.1) has a unique HPD

solution X ∈ (I, mq
mq−1I), where q = max1≤i≤m{pi}.

Proof. It follows from Lemma 2.6 that Eq. (1.1) always has HPD solutions.
Moreover, for any HPD solution X of Eq. (1.1), we have I ≤ X ≤ I +∑m
i=1A

∗
iAi ≤ (1 + λ1(

m∑
i=1

A∗iAi))I. Therefore, if λ1(
∑m
i=1A

∗
iAi) <

1
mq−1 , it

follows that I < X < mq
mq−1I. By Theorem 3.2, we have X is the unique HPD

solution of Eq. (1.1). �
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4. The homotopy continuation method

In this section, by means of the homotopy continuation method (see [2]
for more details) and the technique developed in [14], we derive a numerical
iterative process for solving the matrix equation (1.1).

Define the nonlinear map F : Pn×n ⊂ Cn×n → Cn×n by

(4.1) F (X) = I +

m∑
i=1

A∗iX
−piAi.

The idea of homotopy continuation method for solving the matrix equation
F (X) = X is to consider a homotopy H : [0, 1]×Pn×n → Pn×n such that there
exists a continuous solution curve X : [0, 1]→ Pn×n of H(t,X) = 0, t ∈ [0, 1],
starting at a known point X0 = X(0) and ending at a solution of F (X) = X.

In this section, we define the homotopy H : [0, 1]× Pn×n → Pn×n by

(4.2) H(t,X) = I + t

m∑
i=1

A∗iX
−piAi −X.

Then at t = 0, the solution of H(t,X) = 0 is a known matrix I, while at
t = 1, the solution X of H(t,X) = 0 also solves F (X) = X. To discuss the
numerical method for solving the homotopy equation H(t,X) = 0, we rewrite
the homotopy equation H(t,X) = 0 as the following fixed point form.

Assume that G : [0, 1]× Pn×n ⊂ [0, 1]× Cn×n → Pn×n is a map such that

X(t) = G(t,X(t)), t ∈ [0, 1],

where X : [0, 1]→ Pn×n denotes the solution of H(t,X) = 0. Then for each t,
we can consider the iterative process

(4.3) Xn+1 = G(t,Xn).

Since for a fixed t, this process will converge to X(t) only for starting values
near that point, to overcome the local convergence of iterative process, we
consider the following numerical continuation process:

A partition of J = [0, 1] :

(4.4) 0 = t0 < t1 < · · · < tN = 1,

and a sequence of integers {jk}, k = 1, . . . , N − 1, is chosen with the property
that the points

(4.5)

{
Xk,j+1 = G(tk, Xk,j), j = 0, . . . , jk − 1, k = 1, . . . , N − 1;
Xk+1,0 = Xk,jk , X1,0 = X0,

are well-defined and such that

(4.6) XN,j+1 = G(1, XN,j)

converges to X(1) as j →∞.
The main idea is to choose the partition (4.4) so that X(tk) lies in some

domain of attraction Dtk+1
for each k, 1 ≤ k ≤ N. Then, if Xk,0 ∈ Dtk+1

,
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the sequence generated by (4.3) for t = tk must produce an iterate Xk,jk ∈
Dtk+1

, which in turn can be taken as the starting point Xk+1,0 = Xk,jk for the
next iteration involving tk+1. Thus with X1,0 = X0 as initial point, the entire
process can be carried out until finally tk = tN = 1 is reached. For t = 1,
XN,0 = XN,jN−1

is then in D1 which ensure that (4.5) converges to X(1) as
j →∞.

To discuss the feasibility of the above numerical continuation process, we
will use the following definition and lemmas which can be found in [2].

Definition 4.1 ([2]). If a partition (4.4) exists so that with some sequence
of integers {jk} the entire process (4.5)-(4.6) is well-defined and so that (4.6)
converges to X(1), then the numerical continuation process (4.5)-(4.6) is called
feasible.

Definition 4.2 ([2]). Let G : D ⊂ Rn → Rn be a given mapping. Then any
nonempty set D0 ⊂ D is a domain of attraction of the iterative process

(4.7) xn+1 = G(xn), n = 0, 1, . . . ,

with respect to the point x∗ if for any x0 ∈ D0 we have {xn} ⊂ D and
limn→∞ xn = x∗.

If x∗ ∈ int(D0) for some domain of attraction D0, then x∗ is a point of
attraction of (4.7).

Lemma 4.1 ([2]). Let G : D ⊂ Rn → Rn be Fréchet differentiable at the
fixed point x∗ ∈ int(D) of G. If ρ(G′(x∗)) < 1, then x∗ is a point of attraction
of (4.7) and, more precisely, there is an open ball S(x∗, r) with center x∗ and
radius r > 0 which is a domain of attraction of (4.7) with respect to x∗. Here
ρ(·) denotes the spectral radius of G′(x∗).

Lemma 4.2 ([2]). Let G : [0, 1]×D ⊂ [0, 1]×Rn → Rn, where D is open and
assume that x : [0, 1] → D is continuous and satisfies x(t) = G(t, x(t)). Let G
have a Fréchet derivative with respect to x at (t, x(t)) for every t ∈ [0, 1]. If
Gx(t, x(t)) is continuous on [0, 1] ×D and ρ(Gx(t, x(t))) < 1 for all t ∈ [0, 1],
then the numerical continuation process (4.5)-(4.6) is feasible.

In what follows, we derive a sufficient condition for the existence of a unique
HPD solution of the homotopy equation H(t,X) = 0 for all t ∈ [0, 1].

Theorem 4.1. If λ1(
∑m
i=1A

∗
iAi) <

1
mq−1 , then for arbitrary t ∈ [0, 1], the

homotopy equation H(t,X) = 0 has an unique HPD solution on [I, mq
mq−1I],

where q = max1≤i≤m{pi}.

Proof. Since t > 0, then the homotopy equation H(t,X) = 0 can be rewritten
as

X −
m∑
i=1

(
√
tAi)

∗X−pi(
√
tAi) = I.
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By the hypothesis of the theorem, we have

λ1(

m∑
i=1

(
√
tAi)

∗(
√
tAi)) = λ1(

m∑
i=1

tA∗iAi) ≤ λ1(

m∑
i=1

A∗iAi) <
1

mq − 1
.

It follows from Theorem 3.3 that the homotopy equation H(t,X) = 0 has a
unique HPD solution on [I, mq

mq−1I]. �

In next theorem, the local convergence of the iterative process (4.3) is ob-
tained.

Theorem 4.2. If F (X) = X has a unique HPD solution X∗ on (I, mq
mq−1I),

then there exist an open ball N(X∗, δ) with center X∗ and radius δ > 0 such
that, for any starting value X0 ∈ N(X∗, δ), Xn = F (Xn−1) converges to X∗ as
n→∞, where q = max1≤i≤m{pi}.

Proof. According to F (X) = I +
∑m
i=1A

∗
iX
−piAi and Lemma 2.1, for any

h ∈ Pn×n, we have

F (X∗ + h)− F (X∗) =
m∑
i=1

A∗i [(X∗ + h)−pi −X−pi∗ ]Ai(4.8)

=

m∑
i=1

A∗i
Γ(pi)

∫ ∞
0

(e−s(X∗+h) − e−sX∗)spi−1dsAi

= −
m∑
i=1

A∗i
Γ(pi)

∫ ∞
0

∫ 1

0

e−(1−t)sX∗he−st(X∗+h)dtspidsAi.

By the definition of Fréchet derivative, we obtain

F ′(X∗)h = −
m∑
i=1

A∗i
Γ(pi)

∫ ∞
0

∫ 1

0

e−(1−t)sX∗he−stX∗dtspidsAi.

Let λ be any eigenvalue of F ′(X∗). Then there exists nonzero matrix h∗
such that F ′(X∗)h∗ = λh∗, that is

(4.9) F ′(X∗)h∗ = −
m∑
i=1

A∗i
Γ(pi)

∫ ∞
0

∫ 1

0

e−(1−t)sX∗h∗e
−stX∗dtspidsAi = λh∗.

Since X∗ is the unique HPD solution of F (X) = X, then by Theorem 3.1, there
exist P ∈ Un×n, Qi ∈ Cn×n, i = 1, 2, . . . ,m and diagonal matrices Γ,Λ > 0
such that

Ai = P ∗Γpi/2QiΛP, i = 1, 2, . . . ,m,

where

(4.10)

m∑
i=1

Q∗iQi = I and Γ− Λ2 = I.
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In this case, X∗ = P ∗ΓP, where Γ = diag(λ1, λ2, . . . , λn) with {λj} the eigen-
values of X. Therefore (4.9) can be rewritten as
(4.11)

F ′(X∗)h∗

= −
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

P ∗ΛQ∗iΓ
pi
2 e−(1−t)sΓPh∗P

∗e−stΓdtspidsΓ
pi
2 QiΛP

=λh∗,

which implies

P (F ′(X∗)h)P ∗

= −
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

ΛQ∗iΓ
pi
2 e−(1−t)sΓPhP ∗e−stΓdtspidsΓ

pi
2 QiΛ

= λPh∗P
∗.

Let z = PhP ∗. It follows that

−
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

ΛQ∗iΓ
pi
2 e−(1−t)sΓze−stΓdtspidsΓ

pi
2 QiΛ = λz.

Define the operator L : Cn×n → Cn×n by

(4.12) Lz = −
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

ΛQ∗iΓ
pi
2 e−(1−t)sΓze−stΓΓ

pi
2 QiΛdts

pids.

Then

(4.13) Lz = λz.

Using (4.13), Lemmas 2.3 and 2.4, we can rewrite (4.12) as

vec(Lz) = −
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

(e−stΓΓ
pi
2 QiΛ)T(4.14)

⊗ (ΛQ∗iΓ
pi
2 e−(1−t)sΓ)dtspids · vecz

= −
m∑
i=1

1

Γ(pi)

∫ ∞
0

∫ 1

0

(Λ⊗ Λ)(QTi ⊗Q∗i )(Γ
pi
2 ⊗ Γ

pi
2 )

(e−stΓ ⊗ e−(1−t)sΓ)dtspids · vecz

= λvecz.

Let

B = Λ⊗ Λ, Ji = QTi ⊗Q∗i ,(4.15)

Ci =
(Γpi/2 ⊗ Γpi/2)

Γ(pi)

∫ ∞
0

∫ 1

0

e−tsΓ ⊗ e−(1−t)sΓdtspids, i = 1, 2, . . . ,m.
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Then (4.14) can be rewritten as

(4.16) vec(Lz) = −
m∑
i=1

BJiCi · vecz = λ · vecz.

A combination of (4.11), (4.12), (4.14) and (4.16) gives that

(4.17) ρ(F ′(X∗)) = max{|λ|} = ρ(−
m∑
i=1

BJiCi).

It is easy to verify that

ρ(−
m∑
i=1

BJiCi) ≤ ‖
m∑
i=1

BJiCi‖ ≤
m∑
i=1

‖JiBCi‖ ≤
m∑
i=1

‖BCi‖.

Therefore

(4.18) ρ(F ′(X∗)) ≤
m∑
i=1

‖BCi‖.

In what follows, we will estimate the upper bound of
∑m
i=1 ‖BCi‖.

Assume that

Λ = diag(σ1, σ2, . . . , σn).

By (4.10), we have

(4.19) 0 < σj =
√
λj − 1, j = 1, 2, . . . , n.

According to Lemma 2.5 and (4.19), we have

(4.20) B = diag(σl · σj)n2×n2 = diag(
√
λl − 1 ·

√
λj − 1)n2×n2 ,

where

diag(
√
λl − 1 ·

√
λj − 1)n2×n2

=



σ1σ1 0 · · · 0 · · · · · · 0 · · · 0
0 σ1σ2 · · · 0 · · · · · · 0 · · · 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · σ1σn · · · · · · 0 · · · 0
...

...
...

...
. . .

...
...

...
...

0 0 · · · · · · · · · σnσ1 0 · · · 0

0 0 · · · · · ·
... 0 σnσ2 · · · 0

...
...

...
...

...
...

...
. . .

...
0 0 · · · · · · · · · 0 0 · · · σnσn


,

and

0 < σj =
√
λj − 1, j = 1, 2, . . . , n.



340 J. LI AND Y. ZHANG

Ci =
(Γpi/2 ⊗ Γpi/2)

Γ(pi)

∫ ∞
0

∫ 1

0

e−tsΓ ⊗ e−(1−t)sΓdtspids,

(4.21)

= diag

(
λ
pi/2
l · λpi/2 · 1

Γ(pi)

∫ ∞
0

∫ 1

0

e−tsλl · e−(1−t)sλjdtspids

)
n2×n2

= diag

(
λpij − λ

pi
l

(λj − λl)λpi/2l λ
pi/2
l

)
n2×n2

, i = 1, 2, . . . ,m, l, j = 1, 2, . . . , n.

Since I < X∗ <
mq
mq−1I, then 1 < λl, λj <

mq
mq−1 <

mpi
mpi−1 , i = 1, 2, . . . ,m,

l, j = 1, 2, . . . , n. It follows from (4.21) that
(4.22)
m∑
i=1

‖ CiB ‖=
m∑
i=1

max
l,j


√
λl − 1

√
λj − 1(λpij − λ

pi
l )

(λj − λl)λ
pi
2

l λ
pi
2
j

 =

m∑
i=1

max
l,j
{f(λl, λj)},

where f(x, y) is defined in Lemma 2.7.
Combining Lemma 2.7, (4.18) with (4.22) gives that

ρ(F ′(X∗)) ≤
m∑
i=1

‖BCi‖ =

m∑
i=1

max
l,j
{f(λl, λj)} < m · 1

m
= 1.

According to Lemma 4.1, there exist an open ball N(X∗, δ) with center X∗ and
radius δ > 0 such that, for any starting value X0 ∈ N(X∗, δ), Xn = F (Xn−1)
converges to X∗ as n→∞. �

The next theorem is the main result of this section.

Theorem 4.3. If λ1(
∑m
i=1A

∗
iAi) <

1
mq−1 , then the numerical continuation

process (4.5)-(4.6) is feasible, where q = max1≤i≤m{pi}.

Proof. Define the map G : [0, 1]× Pn×n → Pn×n by

G(t,X(t)) = I + t

m∑
i=1

A∗iX
−piAi.

In the following, we will prove the numerical continuation process (4.5)-(4.6) is
feasible.

By Lemma 2.1, for any h ∈ Pn×n, we have

G(t,X(t) + h)−G(t,X(t)) = t

m∑
i=1

A∗i [(X(t) + h)−pi −X(t)−pi ]Ai(4.23)

= t

m∑
i=1

A∗i
Γ(pi)

∫ ∞
0

(e−s(X(t)+h) − e−sX(t))spi−1dsAi

= − t
m∑
i=1

A∗i
Γ(pi)

∫ ∞
0

∫ 1

0

e−(1−v)sX(t)he−sv(X(t)+h)dvspidsAi.
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By the definition of Fréchet derivative, we obtain

G′(t,X(t))h = −t
m∑
i=1

A∗i
Γ(pi)

∫ ∞
0

∫ 1

0

e−(1−v)sX(t)he−svX(t)dvspidsAi.

Using the same technique described in Theorem 4.2, we have that

ρ(G′(t,X(t))) < t

m∑
i=1

max
l,j


√
λl − 1

√
λj − 1(λpij − λ

pi
l )

(λj − λl)λ
pi
2

l λ
pi
2
j


= t

m∑
i=1

max
l,j
{f(λl, λj)} < t ·m · 1

m
≤ 1,

where 0 < λl, λj <
mq
mq−1 <

mpi
mpi−1 , i = 1, 2, . . . ,m, l, j = 1, 2, . . . , n, and f(x, y)

is defined in Lemma 2.7.
According to Lemma 4.2, the numerical continuation process (4.5)-(4.6) is

feasible. �
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