Browse > Article

Computation of Wave Propagation by Scatter Method Associated with Variational Approximation  

Seo, Seung-Nam (Coastal Engineering & Ocean Energy Research Department, KORDI)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.20, no.6, 2008 , pp. 553-563 More about this Journal
Abstract
If an arbitrary topography is approximated to a number of vertical steps, both variational approximation and eigenfunction expansion method can be used to compute linear wave transformation over the bottom. In this study a scatterer method associated with variational approximation is proposed to calculate reflection and transmission coefficients. Present method may be shown to be more simple and direct than the successive-application-matrix method by O'Hare and Davies. And Several numerical examples are given which are in good agreement with existing results.
Keywords
wave transformation; eigenfunction expansion method; variational approximation; scatterer method; successive-application-matrix method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 서승남 (2008b). 단일계단 지형에서 변분근사법과 고유함수 전개법에 의한 파랑변형 해의 비교. 한국해안해양공학회 논문집, 심의중
2 Kirby, J.T. (1986). A general wave equation for waves over rippled beds. J. Fluid Mech., 162, 171-186   DOI   ScienceOn
3 Massel, S.R. (1993). Extended refraction-diffraction equation for surface waves. Coastal Eng., 19, 97-126   DOI   ScienceOn
4 Bender, C.J. and Dean, R.G. (2003). Wave transformation by two-dimensional bathymetric anomalies with sloped transitions. Coastal Eng., 50, 61-84   DOI   ScienceOn
5 Davies, A.G. and Heathershaw, A.D. (1984). Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech., 144, 419-443   DOI   ScienceOn
6 Porter, D. (2003). The mild-slope equations. J. Fluid Mech.,494, 51-63   DOI   ScienceOn
7 Takano, K. (1960). Effets d'un obstacle paralllpipdique sur la propagation de la houle. La Houille Blanche, 15, 247-267
8 Guazzelli, E., Rey, V. and Belzons, M. (1992). Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech., 245, 301-317   DOI
9 Chamberlain, P.G. and Porter, D. (1995). The modified mildslope equation. J.Fluid Mech., 291, 393-407   DOI   ScienceOn
10 조용식, 이창훈 (1998). 수심이 변하는 지형을 통과하는 파랑의 반사율과 통과율 산정. 대한토목학회논문집, 18(II-4), 351-358
11 Miles, J.W. (1967). Surface-wave scattering matrix for a shelf. J. Fluid Mech., 28, 755-767   DOI
12 Devillard, P., Dunlop, F. and Souillard B. (1988). Localization of gravity waves on a channel with a random bottom. J. Fluid Mech., 186, 521-538   DOI
13 Kirby, J.T. and Dalrymple, R.A. (1983). Propagation of obliquely incident water waves over a trench. J. Fluid Mech.,133, 47-63   DOI   ScienceOn
14 Porter, D. and Staziker, D.J. (1985). Extension of the mildslope equation. J. Fluid Mech., 300, 367-382
15 서승남 (2008a). 산란체법에 의한 다중 계단지형에서의 파랑변형 계산. 한국해안해양공학회논문집, 20(5), 439-451   과학기술학회마을
16 O'Hare, T.J. and Davies, A.G (1993). A comparison of two models for surface-wave propagation over rapidly varying topography. Applied Ocean Res., 15, 1-11   DOI   ScienceOn
17 Suh, K.D., Lee C. and Park, W.S. (1997). Time-dependent equations for wave propagation on rapidly varying topography.Coastal Eng., 32, 91-117   DOI   ScienceOn
18 Booij, N. (1983). A note on the accuracy of the mild-slope equation. Coastal Eng., 7, 191-203   DOI   ScienceOn
19 O'Hare, T.J. and Davies, A.G (1992). A new model for surface-wave propagation over undulating topography. Coastal Eng., 18, 251-266   DOI   ScienceOn