Computation of Wave Propagation by Scatter Method Associated with Variational Approximation

변분근사식과 연계된 산란체법에 의한 파랑변형 계산

  • Seo, Seung-Nam (Coastal Engineering & Ocean Energy Research Department, KORDI)
  • 서승남 (한국해양연구원 연안개발.에너지연구부)
  • Published : 2008.12.31

Abstract

If an arbitrary topography is approximated to a number of vertical steps, both variational approximation and eigenfunction expansion method can be used to compute linear wave transformation over the bottom. In this study a scatterer method associated with variational approximation is proposed to calculate reflection and transmission coefficients. Present method may be shown to be more simple and direct than the successive-application-matrix method by O'Hare and Davies. And Several numerical examples are given which are in good agreement with existing results.

만일 임의의 지형을 다수의 계단으로 근사하면 이 지형 위를 지나는 선형 파랑의 변형을 계산하기 위해 변분근사법과 고유함수 전개법을 사용할 수 있다. 본 논문에서는 반사율과 투과율을 계산하기 위해 변분근사식과 연계된 산란체법을 제시하였다. 본 기법은 O'Hare and Davies의 변환행렬 축차법보다 간단하고 직접적인 방법임을 보였다. 또한 수 개의 수치실험을 실시하여 기존 결과와 거의 같은 결과를 얻었다.

Keywords

References

  1. 서승남 (2008a). 산란체법에 의한 다중 계단지형에서의 파랑변형 계산. 한국해안해양공학회논문집, 20(5), 439-451
  2. 서승남 (2008b). 단일계단 지형에서 변분근사법과 고유함수 전개법에 의한 파랑변형 해의 비교. 한국해안해양공학회 논문집, 심의중
  3. 조용식, 이창훈 (1998). 수심이 변하는 지형을 통과하는 파랑의 반사율과 통과율 산정. 대한토목학회논문집, 18(II-4), 351-358
  4. Bender, C.J. and Dean, R.G. (2003). Wave transformation by two-dimensional bathymetric anomalies with sloped transitions. Coastal Eng., 50, 61-84 https://doi.org/10.1016/j.coastaleng.2003.08.002
  5. Booij, N. (1983). A note on the accuracy of the mild-slope equation. Coastal Eng., 7, 191-203 https://doi.org/10.1016/0378-3839(83)90017-0
  6. Chamberlain, P.G. and Porter, D. (1995). The modified mildslope equation. J.Fluid Mech., 291, 393-407 https://doi.org/10.1017/S0022112095002758
  7. Davies, A.G. and Heathershaw, A.D. (1984). Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech., 144, 419-443 https://doi.org/10.1017/S0022112084001671
  8. Devillard, P., Dunlop, F. and Souillard B. (1988). Localization of gravity waves on a channel with a random bottom. J. Fluid Mech., 186, 521-538 https://doi.org/10.1017/S0022112088000254
  9. Guazzelli, E., Rey, V. and Belzons, M. (1992). Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech., 245, 301-317 https://doi.org/10.1017/S0022112092000478
  10. Kirby, J.T. and Dalrymple, R.A. (1983). Propagation of obliquely incident water waves over a trench. J. Fluid Mech.,133, 47-63 https://doi.org/10.1017/S0022112083001780
  11. Kirby, J.T. (1986). A general wave equation for waves over rippled beds. J. Fluid Mech., 162, 171-186 https://doi.org/10.1017/S0022112086001994
  12. Massel, S.R. (1993). Extended refraction-diffraction equation for surface waves. Coastal Eng., 19, 97-126 https://doi.org/10.1016/0378-3839(93)90020-9
  13. Miles, J.W. (1967). Surface-wave scattering matrix for a shelf. J. Fluid Mech., 28, 755-767 https://doi.org/10.1017/S0022112067002423
  14. O'Hare, T.J. and Davies, A.G (1992). A new model for surface-wave propagation over undulating topography. Coastal Eng., 18, 251-266 https://doi.org/10.1016/0378-3839(92)90022-M
  15. O'Hare, T.J. and Davies, A.G (1993). A comparison of two models for surface-wave propagation over rapidly varying topography. Applied Ocean Res., 15, 1-11 https://doi.org/10.1016/0141-1187(93)90028-V
  16. Porter, D. and Staziker, D.J. (1985). Extension of the mildslope equation. J. Fluid Mech., 300, 367-382
  17. Porter, D. (2003). The mild-slope equations. J. Fluid Mech.,494, 51-63 https://doi.org/10.1017/S0022112003005846
  18. Suh, K.D., Lee C. and Park, W.S. (1997). Time-dependent equations for wave propagation on rapidly varying topography.Coastal Eng., 32, 91-117 https://doi.org/10.1016/S0378-3839(97)81745-0
  19. Takano, K. (1960). Effets d'un obstacle paralllpipdique sur la propagation de la houle. La Houille Blanche, 15, 247-267