Wave Propagation Models Due to Topographic Change: Scatterer Method and Transfer Matrix Method

지형변화에 의한 파랑전파모형: 산란체법과 변환행렬법

  • Seo, Seung-Nam (Coastal Engineering & Ocean Energy Research Department, KORDI)
  • 서승남 (한국해양연구원 연안개발.에너지연구부)
  • Received : 2010.04.05
  • Accepted : 2010.05.28
  • Published : 2010.06.30

Abstract

Both scatterer method and transfer matrix method are compared to analyze their characteristics, which are wave propagation models due to topographic change based on plane wave approximation. Results from the scatterer method are closer to the results obtained by the more accurate existing models and it is appraised that the scatterer method gives the clearer explanation about physical process involved in the wave transformation. Since both methods have analytical solutions, in the computational point of view they are very fast and easy to be implemented. Both methods give a good prediction for wave scattering by relatively simple bedform.

평면파 근사식에 기초한 지형에 의한 파랑변형 모형인 산란체법과 변환행렬법을 비교하여 특성을 분석하였다. 산란체법의 결과가 기존 엄밀해에 보다 근접하고 내재한 물리현상을 보다 명확히 설명하는 것으로 평가된다. 이들은 해석해로 계산이 빠르고 용이하며 지형이 비교적 단순한 경우에는 상당한 정밀도를 보인다.

Keywords

References

  1. 서승남 (2008). 산란체법에 다중 계단지형에서의 파랑변형 계산. 한국해안.해양공학회논문집, 20(5), 439-451.
  2. 서승남 (2009a). 단일계단 지형에서 변분근사법과 고유함수 전개법에 의한 파랑변형 비교. 한국해안.해양공학회논문집, 21(2), 91-107.
  3. 서승남 (2009b). 분할행렬법에 의한 다중 계단지형에서의 파랑 변형 계산. 대한토목학회논문집, 29(4B), 377-384.
  4. Athanassoulis G.A. and Belibassakis K.A. (1999). A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech., 389, 275-301. https://doi.org/10.1017/S0022112099004978
  5. Booij, N. (1983). A note on the accuracy of the mild-slope equation. Coastal Eng., 7, 191-203. https://doi.org/10.1016/0378-3839(83)90017-0
  6. Chamberlain, P.G. and Porter, D. (2006). Multi-mode approximations to wave scattering by an uneven bed. J. Fluid Mech., 556, 421-441. https://doi.org/10.1017/S0022112006009797
  7. Davies, A.G. and Heathershaw, A.D. (1984). Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech., 144, 419-443. https://doi.org/10.1017/S0022112084001671
  8. Devillard, P., Dunlop, F. and Souillard B. (1988). Localization of gravity waves on a channel with a random bottom, J. Fluid Mech., 186, 521-538. https://doi.org/10.1017/S0022112088000254
  9. Guazzelli, E., Rey, V. and Belzons, M. (1992). Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech., 245, 301-317. https://doi.org/10.1017/S0022112092000478
  10. Miles, J.W. (1967). Surface-wave scattering matrix for a shelf. J. Fluid Mech., 28, 755-767. https://doi.org/10.1017/S0022112067002423
  11. O'Hare, T.J. and Davies, A.G. (1993). A comparison of two models for surface-wave propagation over rapidly varying topography. Applied Ocean Res., 15, 1-11. https://doi.org/10.1016/0141-1187(93)90028-V
  12. Porter, R. and Porter, D. (2003). scattered and free waves over periodic beds. J. Fluid Mech., 483, 129-163. https://doi.org/10.1017/S0022112003004208