• Title/Summary/Keyword: Approximation error

Search Result 723, Processing Time 0.023 seconds

New Simplified Sum-Product Algorithm for Low Complexity LDPC Decoding (복잡도를 줄인 LDPC 복호를 위한 새로운 Simplified Sum-Product 알고리즘)

  • Han, Jae-Hee;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.322-328
    • /
    • 2009
  • This paper proposes new simplified sum-product (SSP) decoding algorithm to improve BER performance for low-density parity-check codes. The proposed SSP algorithm can replace multiplications and divisions with additions and subtractions without extra computations. In addition, the proposed SSP algorithm can simplify both the In[tanh(x)] and tanh-1 [exp(x)] by using two quantization tables which can reduce tremendous computational complexity. Moreover, the simulation results show that the proposed SSP algorithm can improve about $0.3\;{\sim}\;0.8\;dB$ of BER performance compared with the existing modified sum-product algorithms.

Radar Tracking Using a Fuzzy-Model-Based Kalman Filter (퍼지모델 기반 칼만 필터를 이용한 레이다 표적 추적)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.303-306
    • /
    • 2003
  • In radar tracking, since the sensor measures range, azimuth and elevation angle of a target, the measurement equation is nonlinear and the extended Kalman filter (EKF) is applied to nonlinear estimation. The conventional EKF has been widely used as a nonlinear filter for radar tracking, but the considerably large measurement error due to the linearization of nonlinear function in highly nonlinear situations may deteriorate the performance of the EKF To solve this problem, a fuzzy-model-based Kalman filter (FMBKF) is proposed for radar tracking. The FMBKF uses a local model approximation based on a TS fuzzy model instead of a Jacobian matrix to linearize nonlinear measurement equation. The hybrid GA and RLS method is used to identify the premise and the consequent parameters and the rule numbers of this TS fuzzy model. In two-dimensional radar tracking problem, the proposed method is compared with the conventional EKF.

  • PDF

Solutions of Integral Equations Related to SPRT for Erlang Distribution (얼랑분포의 축차확률비검정과 관련된 적분 방정식의 해)

  • Lee Eun-Kyung;Na Myung Hwan;Lee Yoon-Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.57-66
    • /
    • 2005
  • In this paper, we propose a method to evaluate the solutions of the renewal equations related to SPRT for Erlang distribution. In SPRT, the Average Sample Number(ASN) and type I or type II error probabilities are shown in Fredholm type integral equations. The integral equations are generally solved by the approximation method using Gaussian quadrature. For Erlang distribution, it has been known that the exact solutions of the equations exist. We propose the algorithm to solve the equations.

Outlier Detection Using Support Vector Machines (서포트벡터 기계를 이용한 이상치 진단)

  • Seo, Han-Son;Yoon, Min
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.171-177
    • /
    • 2011
  • In order to construct approximation functions for real data, it is necessary to remove the outliers from the measured raw data before constructing the model. Conventionally, visualization and maximum residual error have been used for outlier detection, but they often fail to detect outliers for nonlinear functions with multidimensional input. Although the standard support vector regression based outlier detection methods for nonlinear function with multidimensional input have achieved good performance, they have practical issues in computational cost and parameter adjustments. In this paper we propose a practical approach to outlier detection using support vector regression that reduces computational time and defines outlier threshold suitably. We apply this approach to real data examples for validity.

Sensitivity Correlations of Electrical Vehicle (전기 차량의 민감도 상관관계)

  • Lee, Jeong-Ick
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.337-347
    • /
    • 2009
  • Generally, finite element models used in structural analysis have some uncertainties of the geometric dimensions, applied loads and boundary conditions, as well as in material properties due to the manufacturability of aluminum intensive body. Therefore, it is very important to refine or update a finite element model by correlating it with dynamic and static tests. The structural optimization problems of automotive body are considered for mechanical structures with initial stiffness due to preloading and in operation condition or manufacturing. As the mean compliance and deflection under preloading are chosen as the objective function and constraints, their sensitivities must be derived. The optimization problem is iteratively solved by a sequential convex approximation method in the commercial software. The design variables are corrected by the strain energy scale factor in the element levels. This paper presents an updated method based on the sensitivities of structural responses and the residual error vectors between experimental and simulation models.

  • PDF

Image deblurring via adaptive proximal conjugate gradient method

  • Pan, Han;Jing, Zhongliang;Li, Minzhe;Dong, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4604-4622
    • /
    • 2015
  • It is not easy to reconstruct the geometrical characteristics of the distorted images captured by the devices. One of the most popular optimization methods is fast iterative shrinkage/ thresholding algorithm. In this paper, to deal with its approximation error and the turbulence of the decrease process, an adaptive proximal conjugate gradient (APCG) framework is proposed. It contains three stages. At first stage, a series of adaptive penalty matrices are generated iterate-to-iterate. Second, to trade off the reconstruction accuracy and the computational complexity of the resulting sub-problem, a practical solution is presented, which is characterized by solving the variable ellipsoidal-norm based sub-problem through exploiting the structure of the problem. Third, a correction step is introduced to improve the estimated accuracy. The numerical experiments of the proposed algorithm, in comparison to the favorable state-of-the-art methods, demonstrate the advantages of the proposed method and its potential.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Coarse to Fine Optical Flow Detection (조세단계를 이용한 광류검출 알고리즘)

  • Lee Her Man;Seo Jeong Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.223-229
    • /
    • 2005
  • In this paper a coarse-to-fine optical flow detection method is proposed. Provided that optical flow gives reliable approximation to two-dimensional image motion, it can be used to recover the three-dimensional motion, but usually to set the reliable optical flows are difficult. The proposed algorithm uses Horn's algorithm for detecting initial optical flow, then Thin Plate Spline is introduced to warp a image frame of the initial optical flow to the next image frame. The optical flow for the warped image frame is again used iteratively until the mean square error between two image sequence frames is lowered. The proposed method is experimented for the real moving picture image sequence. The proposed algorithm gives dense optical flow vectors.

  • PDF

The Verification of the Reliability and Validity of Special Needs Education Assessment Tool (SNEAT) in Miyagi, Japan

  • HAN, Changwan;KOHARA, Aiko
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.383-384
    • /
    • 2016
  • The Special Needs Education Assessment Tool (SNEAT) were verified of reliability and validity. However, the reliability and validity has been verified is only Okinawa Prefecture, the national data has not been analyzed. Therefore, this study aimed to verify the reliability and construct validity of SNEAT in Miyagi Prefecture as part of the national survey. SNEAT using 55 children collected from the classes on independent activities of daily living for children with disabilities in Miyagi Prefecture between November and December 2015. Survey data were collected in a longitudinal prospective cohort study. The reliability of SNEAT was verified via the internal consistency method; the coefficient of Cronbach's ${\alpha}$ were over 0.7. The validity of SNEAT was also verified via the latent growth curve model. SNEAT is valid based on its goodness-of-fit values obtained using the latent growth curve model, where the values of comparative fit index (0.997), tucker-lewis index (0.996) and root mean square error of approximation (0.025) were within the goodness-of-fit range. These results indicate that SNEAT has high reliability and construct validity.

  • PDF

The Verification of the Reliability and Validity of Employment Promotion Tool for Persons with Disabilities in the Aspect of the Quality of Life(QOL-EPAT) (QOL의 관점에 입각한 장애인고용촉진제도·정책 평가 척도의 신뢰성·타당성 검증)

  • KWON, Hae jin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.387-388
    • /
    • 2016
  • Kwon (2015) was developed Employment Promotion Tool for Persons with Disabilities in the Aspect of the Quality of Life(QOL-EPAT). But its reliability and validity have not been verified yet. Therefore, this study aimed to verify the reliability, content validity and construct validity of QOL-EPAT. This study was conducted with a disability employment specialists. Period May to October 2015, six months, was distributed to collect the questionnaire. Reliability of QOL-EPAT was estimated using the internal consistency method; both the coefficient of Cronbach's ${\alpha}$ were over 0.7. Construct Validity; Construct validity was verified using structural equation modeling (SEM). Goodness of fit index (GFI), Adjusted goodness of fit index (AGFI), comparative fit index (CFI), tucker-Lewis index (TLI) and root mean square error of approximation (RMSEA) are the suitability indices of SEM. As the result, GFI=0.898; AGFI=0.844; CFI=0.961; TLI=0.949 and RMSEA=0.069. The validity was verified because the values of GFI, AGFI, CFI, TLI and RMSEA were within the goodness-of-fit range. Thus, impaired employs promoters of Japan also provided which allows for analysis of the policy by using a validated scale.

  • PDF