• Title/Summary/Keyword: Approximated voltage function

Search Result 11, Processing Time 0.027 seconds

A DTC-PWM Control Scheme of PMSM using an Approximated Voltage Function of Voltage Vector (전압벡터의 근사 전압함수를 이용한 PMSM의 DTC-PWM 제어방식)

  • Kwak, YunChang;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.421-428
    • /
    • 2015
  • An advanced direct torque control (DTC) with pulse width modulation (PWM) method is presented in this paper. The duty ratio calculation of the selected voltage vector is based on the voltage functions of the selected voltage vector according to the sector angle. The proposed DTC uses a conventional DTC scheme with six sector divisions and switching rules. However, the winding voltages are supplied by the PWM approach. Furthermore, the duty ratio of the switching voltage vector is determined by the flux, torque error, and motor speed. The base voltage that shall determine the duty ratio can be calculated by approximate voltage functions according to the voltage angle. For the calculation of base voltages, second-order quadratic functions are used to express the output voltage of the selected voltage vector according to voltage angle. The coefficients for the second-order quadratic functions are selected by the voltage vector, which is determined by the switching rules of the DTC. In addition, the voltage functions are calculated by the coefficients and voltage angle between the voltage vector and rotor position. The switching voltages from the calculated duty ratio can supply the proper torque and flux to reduce the ripple and error. The proposed control scheme is verified through practical experimental comparisons.

Chebyshev Approximation of Field-Effect Mobility in a-Si:H TFT (비정질 실리콘 박막 트랜지스터에서 전계효과 이동도의 Chebyshev 근사)

  • 박재홍;김철주
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.77-83
    • /
    • 1994
  • In this paper we numerically approximated the field-effect mobility of a-Si:H TFT. Field-effect mobility, based on the charge-trapping model and new effective capacitance model in our study, used Chebyshev approximation was approximated as the function of gate potential(gate-to-channel voltage). Even though various external factors are changed, this formula can be applied by choosing the characteristic coefficients without any change of the approximation formula corresponding to each operation region. Using new approximated field-effect mobility formula, the dependences of field-effect mobility on materials and thickness of gate insulator, thickness of a-Si bulk, and operation temperature in inverted staggered-electrode a-Si:H TFT were estimated. By this was the usefulness of new approximated mobility formula proved.

  • PDF

Quick and Accurate Computation of Voltage Stability Margin

  • Karbalaei, Farid;Abasi, Shahriar
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • It is well known that the behavior of PV curves is similar to a quadratic function. This is used in some papers to approximate PV curves and calculate the maximum-loading point by minimum number of power flow runs. This paper also based on quadratic approximation of the PV curves is aimed at completing previous works so that the computational efforts are reduced and the accuracy is maintained. To do this, an iterative method based on a quadratic function with two constant coefficients, instead of the three ones, is used. This simplifies the calculation of the quadratic function. In each iteration, to prevent the calculations from diverging, the equations are solved on the assumption that voltage magnitude at a selected load bus is known and the loading factor is unknown instead. The voltage magnitude except in the first iteration is selected equal to the one at the nose point of the latest approximated PV curve. A method is presented to put the mentioned voltage in the first iteration as close as possible to the collapse point voltage. This reduces the number of iterations needed to determine the maximum-loading point. This method is tested on four IEEE test systems.

Experimental and Numerical Analysis of the Integrated Discrete Time Voltage Mode CMOS Chaotic Generator (이산시간 전압제어형 CMOS 혼돈발생회로의 특성해석)

  • 송한정;박용수;송병근;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.693-696
    • /
    • 1999
  • This paper presents an analysis of the chaotic behavior in the discrete-time chaotic generator fabricated by CMOS technology. An approximated empirical equation is extracted from the measurement data of a nonlinear function block. Then the bifurcation diagram and Lyapunov exponent and time waveforms and frequency responses of the chaotic generator are calculated and simulated. And results of experiments in the chaotic circuit with the $\pm$2.5V power supply and clock rate of 10KHz are shown, and analysed.

  • PDF

Analytical Solution for Instantaneous Torque Control of an Induction Motor (유도전동기의 순시토크제어를 위한 피드포워드적 전압지령의 해석해)

  • Jeong, S.K.;You, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.231-233
    • /
    • 2001
  • This paper describes an analytical solution of the voltage commands for instantaneous torque control of an I.M. The analytical solution is expressed as a simple explicit function of the instantaneous torque commands and motor speed. On the basis of the derived analytical solution, the maximum torque change rate of an I.M with a limited voltage-source is analyzed, and also the dynamic influence of rapid changes in motor speed on output torque derivations is investigated. The detailed results of these two analyses are approximated here in term of first-order linear differential equations, and their validities are confirmed through the demonstrative numerical simulations. This paper includes the simulation results of the instantaneous torque control with varied motor parameters for sensitivity analysis.

  • PDF

Development of LED TV Panel Brightness Uniformity Correction System (LED TV 패널 밝기 균일화 보정 시스템 개발)

  • Park, Je Sung;Lee, Won Woo;Jian, Zhangye;Joo, Hyonam;Kim, Joon Seek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.382-388
    • /
    • 2016
  • When Flat Panel Display (FPD) is made with backlight module, such as LED TV, it inherently suffers from the non-uniform backlight luminance problem that results in un-even brightness distribution throughout the TV screen. If the luminance of each pixel location of a TV screen as a function of the driving voltage can be measured, it can be used to compensate the non-uniformity of the backlight module. We use a carefully calibrated imaging system to take pictures of a TV screen at different levels of brightness and generate the compensation functions for the driving circuitry to correct the luminance level at each pixel location. Making use of the fact that the luminance of the screen is normally brightest at around the center of the screen and gradually decreases toward the border of the screen, the luminance of the whole TV screen is approximated by a mathematical function of the pixel locations. The parameters of the function are computed in the least square sense by the values of both the pixel luminance sent from the driving circuit and the grayscale value measured from the image taken by the imaging system. To justify the correction system, a simple second order polynomial function is used to approximate the luminance across the screen. When the driving circuit voltage is corrected according to the measured function, the variance of the screen luminance is reduced to one tenth of the one measured from the un-corrected TV screen.

Analysis of Dielectric Breakdown of Hot SF6 Gas in a Gas Circuit Breaker

  • Kim, Hong-Kyu;Chong, Jin-Kyo;Song, Ki-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.264-269
    • /
    • 2010
  • This paper presents the analysis of the dielectric characteristics of a hot $SF_6$ gas in a gas circuit breaker. Hot gas flow is analyzed using the FVFLIC method considering the moving boundary, material properties of real $SF_6$ gas, and arc plasma. In the arc model, the re-absorption of the emitted radiation is approximated with the boundary source layer where the re-absorbed radiation energy is input as an energy source term in the energy conservation equation. The breakdown criterion of a hot gas is predicted using the critical electric field as a function of temperature and pressure. To validate the simulation method, breakdown voltage for a 145kV 40kA circuit breaker was measured for various conditions. Consistent results between the simulation and experiment were confirmed.

A New Two-Dimensional Model for the Drain-Induced Barrier Lowering of Fully Depleted Short-Channel SOI-MESFET's

  • Jit, S.;Pandey, Prashant;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2003
  • A new two-dimensional analytical model for the potential distribution and drain-induced barrier lowering (DIBL) effect of fully depleted short-channel Silicon-on-insulator (SOI)-MESFET's has been presented in this paper. The two dimensional potential distribution functions in the active layer of the device is approximated as a simple parabolic function and the two-dimensional Poisson's equation has been solved with suitable boundary conditions to obtain the bottom potential at the Si/oxide layer interface. It is observed that for the SOI-MESFET's, as the gate-length is decreased below a certain limit, the bottom potential is increased and thus the channel barrier between the drain and source is reduced. The similar effect may also be observed by increasing the drain-source voltage if the device is operated in the near threshold or sub-threshold region. This is an electrostatic effect known as the drain-induced barrier lowering (DIBL) in the short-gate SOI-MESFET's. The model has been verified by comparing the results with that of the simulated one obtained by solving the 2-D Poisson's equation numerically by using the pde toolbox of the widely used software MATLAB.

Uncertainty Observer using the Radial Basis Function Networks for Induction Motor Control

  • Huh, Sung-Hoe;Lee, Kyo-Beum;Ick Choy;Park, Gwi-Tae;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • A stable adaptive sensorless speed controller for three-level inverter fed induction motor direct torque control (DTC) system using the radial-basis function network (RBFN) is presented in this paper. Torque ripple in the DTC system for high power induction motor could be drastically reduced with the foregoing researches of switching voltage selection and torque ripple reduction algorithms. However, speed control performance is still influenced by the inherent uncertainty of the system such as parametric uncertainty, external load disturbances and unmodeled dynamics, and its exact mathematical model is much difficult to be obtained due to their strong nonlinearity. In this paper, the inherent uncertainty is approximated on-line by the RBFN, and an additional robust control term is introduced to compensate for the reconstruction error of the RBFN instead of the rich number of rules and additional updated parameters. Control law for stabilizing the system and adaptive laws for updating both of weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov, and the stability proof of the whole control system is presented. Computer simulations as well as experimental results are presented to show the validity and effectiveness of the proposed system.

Contribution of Scattered X Rays to Signal Imaging with Anti-scatter Grids

  • Maeda, Koji;Arimura, Hidetaka;Morikawa, Kaoru;Kanamori, Hitoshi;Matsumoto, Masao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.404-406
    • /
    • 2002
  • We have investigated the contribution of the scattered x rays to the signal imaging in the radiographs acquired with anti-scatter grids of several grid ratios by separating the line spread functions (LSFs) derived from the signal edge image into the primary and the scatter components. By using a 1.0-mm lead plate in the scattering material, the blurred signal edge images were acquired by use of an imaging plate at a tube voltage of 80 kV with the anti-scatter grids of grid ratios for 5:1, 6:1, 8:1, 10:1 and 12:1. The edge profiles of the signal images were scanned and those in relative exposure were differentiated to obtain the LSFs. To investigate the contribution of the scattered x rays to the signal imaging, we proposed a method for separating the LSFs derived from the signal images into the primary and the scatter components, where the scatter component was approximated with exponential function. Our basic approach is to separate the area of the LSFs by ratios of the scattered x-ray exposure to the primary x-ray exposure, which were obtained for the grid ratios by use of a lead disk method. The LSFs and the two components were Fourier transformed to obtain the modulation transfer functions (MTFs) and their two components. As the result, we found that, by using the anti-scatter grids, the scattered x rays were reduced, but the shape of the LSFs of the scatter component hardly changed. The contributions of the scatter component to the MTFs were not negligible (more than 10 %) for spatial frequencies lower than about 1.0 mm$\^$-l/ and that was greater as the grid ratio decreasing. On the other hand, for higher frequencies, the primary component was dominant compared with the scatter component.

  • PDF