• Title/Summary/Keyword: Approximate

Search Result 4,339, Processing Time 0.027 seconds

Approximate Multiplier with High Density, Low Power and High Speed using Efficient Partial Product Reduction (효율적인 부분 곱 감소를 이용한 고집적·저전력·고속 근사 곱셈기)

  • Seo, Ho-Sung;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.671-678
    • /
    • 2022
  • Approximate computing is an computational technique that is acceptable degree of inaccurate results of accurate results. Approximate multiplication is one of the approximate computing methods for high-performance and low-power computing. In this paper, we propose a high-density, low-power, and high-speed approximate multiplier using approximate 4-2 compressor and improved full adder. The approximate multiplier with approximate 4-2 compressor consists of three regions of the exact, approximate and constant correction regions, and we compared them by adjusting the size of region by applying an efficient partial product reduction. The proposed approximate multiplier was designed with Verilog HDL and was analyzed for area, power and delay time using Synopsys Design Compiler (DC) on a 25nm CMOS process. As a result of the experiment, the proposed multiplier reduced area by 10.47%, power by 26.11%, and delay time by 13% compared to the conventional approximate multiplier.

δ-approximate Periods and γ-approximate Periods of Strings over Integer Alphabets (정수문자집합에 대한 문자열의 δ-근사주기와 γ-근사주기)

  • Kim, Youngho;Sim, Jeong Seop
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1073-1078
    • /
    • 2016
  • (${\delta}$, ${\gamma}$)-matching for strings over integer alphabets can be applied to such fields as musical melody and share prices on stock markets. In this paper, we define ${\delta}$-approximate periods and ${\gamma}$-approximate periods of strings over integer alphabets. We also present two $O(n^2)$-time algorithms, each of which finds minimum ${\delta}$-approximate periods and minimum ${\gamma}$-approximate periods, respectively. Then, we provide the experimental results of execution times of both algorithms.

Approximate Approaches in Chinese and Chosun Mathematics (중국 및 조선 수학에서의 근사적 접근)

  • Chang, Hye-Won
    • Journal for History of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.1-15
    • /
    • 2011
  • Approximation is a very useful approach in mathematics research. It was the same in traditional Chinese and Chosun mathematics. This study derived five characteristics from approximation approaches which were found in Chinese and Chosun mathematical books: improvement of approximate values, common and inevitable use of approximate values, recognition of approximate values and their reasons, comparison of their exactness, application of approximate principles. Through these characteristics, we can infer what Chinese and Chosun mathematicians recognized approximate values and how they manipulated them. They took approximate approaches by necessity or for the sake of convenience in mathematical study and its applications. Also, they tried to improve the degree of exactness of approximate values and use the inverse calculations to check them.

Dynamic response optmization using approximate search (근사 선탐색을 이용한 동적 반응 최적화)

  • Kim, Min-Soo;Choi, Dong-hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.811-825
    • /
    • 1998
  • An approximate line search is presented for dynamic response optimization with Augmented Lagrange Multiplier(ALM) method. This study empolys the approximate a augmented Lagrangian, which can improve the efficiency of the ALM method, while maintaining the global convergence of the ALM method. Although the approximate augmented Lagragian is composed of only the linearized cost and constraint functions, the quality of this approximation should be good since an approximate penalty term is found to have almost second-order accuracy near the optimum. Typical unconstrained optimization algorithms such as quasi-Newton and conjugate gradient methods are directly used to find exact search directions and a golden section method followed by a cubic polynomial approximation is empolyed for approximate line search since the approximate augmented Lagrangian is a nonlinear function of design variable vector. The numberical performance of the proposed approach is investigated by solving three typical dynamic response optimization problems and comparing the results with those in the literature. This comparison shows that the suggested approach is robust and efficient.

Energy-Efficient Approximate Speech Signal Processing for Wearable Devices

  • Park, Taejoon;Shin, Kyoosik;Kim, Nam Sung
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.145-150
    • /
    • 2017
  • As wearable devices are powered by batteries, they need to consume as little energy as possible. To address this challenge, in this article, we propose a synergistic technique for energy-efficient approximate speech signal processing (ASSP) for wearable devices. More specifically, to enable the efficient trade-off between energy consumption and sound quality, we synergistically integrate an approximate multiplier and a successive approximate register analog-to-digital converter using our enhanced conversion algorithm. The proposed ASSP technique provides ~40% lower energy consumption with ~5% higher sound quality than a traditional one that optimizes only the bit width of SSP.

Linear Approximate Henstock Integral Equations (선형 근사 헨스톡 적분방정식에 대하여)

  • Rim, Dong-Il;Lim, Bok-Young
    • Journal for History of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.107-117
    • /
    • 2005
  • In this paper, we introduce linear approximate Henstock integral equations that is slightly different from linear Henstock integral equations, and we also offer an example which shows that some integral equation has a solution in the sense of the approximate Henstock integral but does not have any solutions in the sense of the Henstock integral. Furthermore, we investigate the existence and uniqueness of solution of the approximate Henstock integral equation.

  • PDF

A Sequential Approximate Optimization Technique Using the Previous Response Values (응답량 재사용을 통한 순차 근사최적설계)

  • Hwang Tae-Kyung;Choi Eun-Ho;Lim O-Kaung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.45-52
    • /
    • 2005
  • A general approximate optimization technique by sequential design domain(SDD) did not save response values for getting an approximate function in each step. It has a disadvantage at aspect of an expense. In this paper, previous response values are recycled for constructing an approximate function. For this reason, approximation function is more accurate. Accordingly, even if we did not determine move limit, a system is converged to the optimal design. Size and shape optimization using approximate optimization technique is carried out with SDD. Algorithm executing Pro/Engineer and ANSYS are automatically adopted in the approximate optimization program by SDD. Convergence criterion is defined such that optimal point must be located within SDD during the three steps. The PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information in the direction finding problem and uses the active set strategy.

A Kullback-Leibler divergence based comparison of approximate Bayesian estimations of ARMA models

  • Amin, Ayman A
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.471-486
    • /
    • 2022
  • Autoregressive moving average (ARMA) models involve nonlinearity in the model coefficients because of unobserved lagged errors, which complicates the likelihood function and makes the posterior density analytically intractable. In order to overcome this problem of posterior analysis, some approximation methods have been proposed in literature. In this paper we first review the main analytic approximations proposed to approximate the posterior density of ARMA models to be analytically tractable, which include Newbold, Zellner-Reynolds, and Broemeling-Shaarawy approximations. We then use the Kullback-Leibler divergence to study the relation between these three analytic approximations and to measure the distance between their derived approximate posteriors for ARMA models. In addition, we evaluate the impact of the approximate posteriors distance in Bayesian estimates of mean and precision of the model coefficients by generating a large number of Monte Carlo simulations from the approximate posteriors. Simulation study results show that the approximate posteriors of Newbold and Zellner-Reynolds are very close to each other, and their estimates have higher precision compared to those of Broemeling-Shaarawy approximation. Same results are obtained from the application to real-world time series datasets.

THE STABILITY OF A DERIVATION ON A BANACH ALGEBRA

  • LEE, EUN HWI;CHANG, ICK-SOON;JUNG, YONG-SOO
    • Honam Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.113-124
    • /
    • 2006
  • In this article, we show that for an approximate derivation on a Banach *-algebra, there exist a unique derivation near the an approximate derivation and for an approximate derivation on a $C^*$-algebra, there exist a unique derivation near the approximate derivation.

  • PDF

APPROXIMATE FIBRATIONS AND NON-APPROXIMATE FIBRATIONS IN PL CATEGORY

  • Im, Young-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1077-1085
    • /
    • 1996
  • This paper provides examples which can not be approximate fibrations and shows that if $N^n$ is a closed aspherical manifold, $\pi_1(N)$ is hyperhophian, normally cohophian, and $\pi_1(N)$ has no nontrivial Abelian normal subgroup, then the product of $N^n$ and a sphre $S^m$ satisfies the property that all PL maps from an orientable manifold M to a polyhedron B for which each point preimage is homotopy equivalent to $N^n \times S^m$ necessarily are approximate fibrations.

  • PDF