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Abstract
Autoregressive moving average (ARMA) models involve nonlinearity in the model coefficients because of

unobserved lagged errors, which complicates the likelihood function and makes the posterior density analytically
intractable. In order to overcome this problem of posterior analysis, some approximation methods have been
proposed in literature. In this paper we first review the main analytic approximations proposed to approximate
the posterior density of ARMA models to be analytically tractable, which include Newbold, Zellner-Reynolds,
and Broemeling-Shaarawy approximations. We then use the Kullback-Leibler divergence to study the relation
between these three analytic approximations and to measure the distance between their derived approximate
posteriors for ARMA models. In addition, we evaluate the impact of the approximate posteriors distance in
Bayesian estimates of mean and precision of the model coefficients by generating a large number of Monte Carlo
simulations from the approximate posteriors. Simulation study results show that the approximate posteriors of
Newbold and Zellner-Reynolds are very close to each other, and their estimates have higher precision compared
to those of Broemeling-Shaarawy approximation. Same results are obtained from the application to real-world
time series datasets.

Keywords: approximate posteriors distance, Kullback-Leibler calibration, multivariate t distribu-
tion, Jeffreys’ prior, natural conjugate prior

1. Introduction

Autoregressive moving average (ARMA) modeling of time series has been successfully applied in
different fields such as economics, finance, and engineering. Bayesian analysis of ARMA models is
difficult due to the nonlinearity in the coefficients of moving average (MA) part, which complicates
the likelihood function and makes the posterior density analytically intractable (Amin, 2019a). Ac-
cordingly, the exact posterior analysis of ARMA models requires the use of numerical integration,
which is computationally expensive. In order to overcome this problem, three well-known analytic
approximations were proposed by Newbold (1973), Zellner and Reynolds (1978), and Broemeling and
Shaarawy (1984, 1988) to approximate the posterior density to be an analytically tractable closed-form
distribution.

Newbold (1973) proposed the first analytic approximation by expanding unobserved errors as a
linear function in the model coefficients using the first order Taylor’s expansion. In addition, Zellner
and Reynolds (1978) proposed the second analytic approximation, denoted by Zellner-Reynolds, by
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expanding the errors sum of squares, rather than the errors, of ARMA model as a quadratic function in
the model cofficients using the second order Taylor’s expansion. Moreover, Broemeling and Shaarawy
(1984, 1988) proposed the third analytic approximation, denoted by Broemeling-Shaarawy, by simply
replacing unobserved lagged errors with their estimates to linearize the errors as a function in the
model coefficients.

Because of the simplicity of Broemeling-Shaarawy analytic approximation compared to other pro-
posed approximations, it has been widely extended to the Bayesian analysis of many time series mod-
els such as seasonal ARMA models (Amin, 2009; Ismail and Amin, 2014), multivariate MA models
(Shaarawy and Ali, 2012), double seasonal MA models (Amin, 2017b), and double seasonal ARMA
models (Amin, 2017a, 2018). However, few work have been introduced to evaluate and compare the
accuracy of these three analytic approximations. Ismail (1994) used a small scale of simulation study
to investigate the accuracy of the three approximations in the case of MA model of order one, and
Ali (1998) and Soliman (1999) extended his work to the MA model of order two and to ARMA and
seasonal ARMA of order one, respectively. Therefore, there is a need in the Bayesian time series
analysis to study how these analytic approximations are mathematically related and to comprehen-
sively evaluate their accuracy, aiming to help researchers to make a trade-off between the simplicity
and accuracy of these approximations. As a motivation to this work, the outcome of these analytic
approximations for complicated time series models can be used as inputs to advanced methods such
as Markov chain Monte Carlo (MCMC) methods (Amin and Ismail, 2015; Amin, 2020, 2022). For
example, in the case of seasonal ARMA models where the posterior density is nonlinear function in
the model coefficients and thus analytically intractable. So, these analytic approximations can be used
to approximate the posterior density, which in turn is used to derive the full conditional posteriors as
a main requirement to apply MCMC methods to introduce the Bayesian estimation and prediction for
the underlying seasonal ARMA models.

In order to fill this gap, we first review these three analytic approximations and then we use the
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) to study mathematically the relation
between them and to measure the distance between their derived approximate posteriors for ARMA
models. In addition, we evaluate the impact of the approximate posteriors distance in the Bayesian
estimates of the model coefficients and their precision by generating a large number of Monte Carlo
simulations from the approximate posteriors. Therefore, we can summarize our work in this paper as
follows. First, we derive the KL divergence between Newbold, Zellner-Reynolds, and Broemeling-
Shaarawy approximate posteriors and compute its calibration to study mathematically the relation
between them and to measure their distances. Second, we use a large number of Monte Carlo simula-
tions from the approximate posteriors to evaluate the impact of the posteriors distance in the Bayesian
estimates of mean and precision of the model coefficients. Finally, we use real-world time series
datasets to illustrate the use of the KL divergence to measure the distance between the approximate
posteriors and show the impact of this distance in the Bayesian estimates.

The remainder of this paper is organized as follows. In Section 2 we present the background
of the ARMA models and related Bayesian concepts, and in Section 3 we summarize the analytic
approximations. In Section 4 we derive the KL divergence between the approximate posteriors and
its calibration. In Section 5 we present the simulation study and real-world time series datasets to
measure the distance between the approximate posteriors and evaluate the impact of this distance in
the Bayesian estimates. Finally, we give the conclusions in Section 6.

2. ARMA models and related Bayesian concepts
Time series {yt} can be modeled by an autoregressive moving average (ARMA) model of order (p, q),
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simply denoted by ARMA(p, q), and written as (Box et al., 2015):

φp(B)yt = θq(B)εt, (2.1)

where φp(B) = (1 − φ1B − φ2B2 − · · · − φpBp) and θq(B) = (1 + θ1B + θ2B2 + · · · + θqBq) are the
autoregressive and moving average polynomials with orders p and q respectively, and B is a backshift
operator defined as Bkzt = zt−k. {εt} is a sequence of independent normal errors with zero mean and
variance σ2 < ∞. The ARMA model (2.1) is stationary if all the roots of φp(B) = 0 lie outside the
unit circle, and if all the roots of θq(B) = 0 lie outside the unit circle this model is invertibile. For
more details about the stationarity and invertibility properties of time series models see (Box et al.,
2015). The model (2.1) can be simplified as:

yt =

p∑
i=1

φiyt−i +

q∑
i=1

θiεt−i + εt

= Xtβ + εt, (2.2)

where Xt = (yt−1, . . . , yt−p, εt−1, . . . , εt−q) is the tth row of the design matrix X of order n × m, i.e.
m = p + q, and β = (φ1, . . . , φp, θ1, . . . , θq)T is the model coefficients.

For ARMA model with normally distributed errors, the likelihood function is given by

L
(
β, σ2 | y

)
∝

(
σ2

)− n
2 exp

{
−

1
2σ2 (y − Xβ)T (y − Xβ)

}
∝

(
σ2

)− n
2 exp

{
−

Qn

2σ2

}
, (2.3)

where Qn = εTε is the errors sum of squares, and the natural conjugate prior is normal-gamma
distribution. So, suppose β ∼ Nm(µβ, σ2Σβ) and σ2 ∼ IG(ν/2, λ/2), the joint natural conjugate prior
distribution of β and σ2 can be written as:

ζn

(
β, σ2

)
∝ (σ2)−(

ν+m
2 +1) exp

{
−

1
2σ2

[
λ +

(
β − µβ

)T
Σ−1
β

(
β − µβ

)]}
, (2.4)

where µβ,Σβ, ν and λ are hyperparameters need to be estimated.
In case of little or no information is available about the model parameters, Jeffreys’ prior can be

employed, and it is given as

ζ j

(
β, σ2

)
∝

(
σ2

)−1
, σ2 > 0. (2.5)

Multiplying the likelihood function (2.3) by each one of these two joint prior distributions results
in the following joint posteriors. For the natural conjugate prior, the joint posterior of β and σ2 is:

ζn

(
β, σ2 | y

)
∝

(
σ2

)−( n+ν+m
2 +1)

exp
{
−

1
2σ2

[
λ +

(
β − µβ

)T
Σ−1
β

(
β − µβ

)
+ Qn

]}
. (2.6)

For Jeffreys’ prior, the joint posterior of β and σ2 is:

ζ j

(
β, σ2 | y

)
∝

(
σ2

)−( n
2 +1)

exp
{
−

Qn

2σ2

}
. (2.7)

It is worth observing that the unknown lagged errors are part of the design matrices X which
complicates the likelihood function and makes the joint posteriors of β and σ2 analytically intractable.
As a result, analytic approximations were introduced to approximate these joint posteriors as we
review in the following section.
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3. Analytic approximations

3.1. Newbold approximation

Newbold (1973) expanded the errors as a linear function in the model coefficients β around their non-
linear least squares estimates (NLSE) by using the first order Taylor’s expansion. So, the approximate
errors for Newbold (εN

t ) can be calculated using the following formula:

εN
t = ε̂t + Ut

(
β − β̂

)
, (3.1)

where ε̂t are the errors estimated recursively using NLSE β̂ of the model coefficients as:

ε̂t = yt − X̂tβ̂ (3.2)

and X̂t is the vector of the explanatory variables (yt−1, yt−2, . . . , yt−p, ε̂t−1, ε̂t−2, . . . , ε̂t−q) after replacing
the error terms by their NLSE’s. Ut is a derivative vector that can be defined as:

Ut = (U1t,U2t, . . . ,Umt)

=

(
∂εt

∂β1

∂εt

∂β2
, . . . ,

∂εt

∂βm

) ∣∣∣∣∣∣
β=β̂

. (3.3)

Accordingly, the Newbold approximate errors sum of squares QN
n can be obtained as:

QN
n = Q̂n +

(
β − β̂

)T
UT U

(
β − β̂

)
, (3.4)

where Q̂n = ε̂T ε̂ and ε̂t is computed as in Equation (3.2), and U is a matrix with the tth row is Ut

defined in Equation (3.3). Therefore, the Newbold approximate likelihood function is given by

LN
(
β, σ2 | y

)
∝

(
σ2

)− n
2 exp

{
−

1
2σ2

[
Q̂n +

(
β − β̂

)T
UT U

(
β − β̂

)]}
(3.5)

and the Newbold approximate joint posterior of β and σ2, in case of natural conjugate prior, can be
obtained as:

ζN
n

(
β, σ2|y

)
∝

(
σ2

)−( n+ν+m
2 +1)

exp
{
−

1
2σ2

[
λ+

(
β−µβ

)T
Σ−1
β

(
β−µβ

)
+Q̂n+

(
β−β̂

)T
UTU

(
β−β̂

)]}
. (3.6)

Using some mathematical manipulations, we can prove that the marginal approximate posterior of the
model coefficients β is a multivariate t distribution with degrees of freedom vn = (n + ν) and location
vector and dispersion matrix are respectively:

µN
n = A−1

n Bn and VN
n =

1
vn − 2

A−1
n

[
β̂T UT Uβ̂ + Q̂n + λ + µT

βΣ−1
β µβ − BT

n A−1
n Bn

]
, (3.7)

where A−1
n = (UT U + Σ−1

β )−1 and Bn = (UT Uβ̂ + Σ−1
β µβ). By setting λ = 0, Σ−1

β = 0, and ν = −m,
we can obtain the Newbold approximate marginal posterior of β in the case of Jeffreys’ prior as a
multivariate t distribution with degrees of freedom v j = (n − m) and location vector and dispersion
matrix are respectively:

µN
j = β̂ and VN

j =
Q̂n

v j − 2

(
UT U

)−1
. (3.8)
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3.2. Zellner-Reynolds approximation

Zellner and Reynolds (1978) expanded the errors sum of squares Qn, instead of the errors, as a
quadratic function in the model coefficients using the second order of Taylor’s expansion. The Zellner-
Reynolds approximation of the errors sum of squares can be calculated as:

QZR
n = Q̂n +

1
2

(
β − β̂

)T
R

(
β − β̂

)
, (3.9)

where R is an m × m matrix of the second derivatives that can be defined as:

R =



∂2Qn

∂β2
1

∂Q2
n

∂β1∂β2
· · ·

∂Q2
n

∂β1∂βm

∂Q2
n

∂β2∂β1

∂2Qn

∂β2
2

· · ·
∂Q2

n
∂β2∂βm

...
...

. . .
...

∂Q2
n

∂βm∂β1

∂2Qn
∂βm∂β2

· · ·
∂Q2

n

∂β2
m


. (3.10)

Accordingly, the Zellner-Reynolds approximate likelihood function is given by

LZR
(
β, σ2 | y

)
∝

(
σ2

)− n
2 exp

{
−

1
2σ2

[
Q̂n +

1
2

(
β − β̂

)T
R

(
β − β̂

)]}
(3.11)

and by employing the natural conjugate prior we can obtain the approximate joint posterior of β and
σ2 as:

ζN
n

(
β, σ2|y

)
∝

(
σ2

)−( n+ν+m
2 +1)

exp
{
−

1
2σ2

[
λ+

(
β−µβ

)T
Σ−1
β

(
β−µβ

)
+Q̂n+

1
2

(
β−β̂

)T
R

(
β−β̂

)]}
. (3.12)

With some manipulations we can simply derive the marginal approximate posterior of the model
coefficients β as a multivariate t distribution with degrees of freedom vn = (n + ν) and location vector
and dispersion matrix are respectively:

µZR
n = A−1

z Bz and VZR
n =

1
vn − 2

A−1
z

[
1
2
β̂T Rβ̂ + Q̂n + λ + µT

βΣ−1
β µβ − BT

z A−1
z Bz

]
, (3.13)

where A−1
z = ((1/2)R + Σ−1

β )−1 and Bz = ((1/2)Rβ̂ + Σ−1
β µβ). By setting λ = 0, Σ−1

β = 0, and ν = −m,
we can obtain the approximate marginal posterior of β in the case of Jeffreys’ prior as a multivariate
t distribution with degrees of freedom v j = (n − m) and location vector and dispersion matrix are
respectively:

µZR
j = β̂ and VZR

j =
Q̂n

v j − 2

(
1
2

R
)−1

. (3.14)

3.3. Broemeling-Shaarawy approximation

Broemeling and Shaarawy (1984, 1988) approximated the unobserved errors by simply replacing the
unobserved lagged errors with their NLSE’s to be a linear function in the model coefficients as follows:

εBS
t = yt − X̂tβ

= ε̂t − X̂t

(
β − β̂

)
, (3.15)
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where X̂t is tth row of the design matrix after replacing the unobserved lagged error terms by their
NLSE’s. Therefore, the Broemeling-Shaarawy approximate errors sum of squares QBS

n can be ob-
tained as:

QBS
n = Q̂n +

(
β − β̂

)T
X̂T X̂

(
β − β̂

)
− 2

(
β − β̂

)T
X̂T ε̂ (3.16)

and the approximate likelihood function is given by

LBS
(
β, σ2 | y

)
∝

(
σ2

)− n
2 exp

{
−

1
2σ2

[
Q̂n +

(
β − β̂

)T
X̂T X̂

(
β − β̂

)
− 2

(
β − β̂

)T
X̂T ε̂

]}
(3.17)

and the Broemeling-Shaarawy approximate joint posterior of β and σ2, in case of natural conjugate
prior, can be obtained as:

ζBS
n

(
β, σ2 | y

)
∝ (σ2)−(

n+ν+m
2 +1) exp

{
−

1
2σ2

[
λ +

(
β − µβ

)T
Σ−1
β

(
β − µβ

)
+ Q̂n

+
(
β − β̂

)T
X̂T X̂

(
β − β̂

)
− 2

(
β − β̂

)T
X̂T ε̂

] }
. (3.18)

Using some manipulations, we can derive the marginal approximate posterior of the model coefficients
β to be a multivariate t distribution with degrees of freedom vn = (n + ν) and location vector and
dispersion matrix are respectively:

µBS
n = A−1

b Bb and VBS
n =

1
vn − 2

A−1
b

[
yT y + λ + µT

βΣ−1
β µβ − BT

b A−1
b Bb

]
, (3.19)

where A−1
b = (X̂T X̂ + Σ−1

β )−1 and Bb = (X̂T y + Σ−1
β µβ). By setting λ = 0, Σ−1

β = 0, and ν = −m, the
approximate marginal posterior of β in the case of Jeffreys’ prior can be obtained as a multivariate
t distribution with degrees of freedom v j = (n − m) and location vector and dispersion matrix are
respectively:

µBS
j =

(
X̂T X̂

)−1
X̂T y and VBS

j =
Q̂n

v j − 2

(
X̂T X̂

)−1
. (3.20)

4. Kullback-Leibler divergence of approximate posteriors

The Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) can be used to measure the dis-
tance between any two of the approximate posteriors of the ARMA model coefficients introduced
in Section 3. To explain the idea, suppose we have two multivariate t posteriors for β: the first is
ζ1(β | y) with parameters mean µ1, dispersion matrix V1, and degrees of freedom v1, and the second
is ζ2(β | y) with parameters mean µ2, dispersion matrix V2, and degrees of freedom v2. The KL
divergence between these two posteriors can be written as:

KL
[
ζ1(β | y), ζ2(β | y)

]
=

∫
ln

(
ζ1(β | y)
ζ2(β | y)

)
ζ1(β | y)dβ. (4.1)

This KL divergence is not symmetric and always non-negative, and it equals to zero when the two
posteriors are the same. This implies that the smaller its value, the closer are the two posteriors. We
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can simplify the KL divergence (4.1) as:

KL
[
ζ1(β | y), ζ2(β | y)

]
=

∫ [
− ln (ζ2(β | y))

]
ζ1(β | y)dβ −

∫ [
− ln (ζ1(β | y))

]
ζ1(β | y)dβ

= CH
[
ζ1(β | y), ζ2(β | y)

]
− H

[
ζ1(β | y)

]
, (4.2)

where CH
[
ζ1(β | y), (ζ2(β | y)

]
and H

[
ζ1(β | y)

]
are known as the cross-entropy and Shannon entropy

respectively (Amin, 2017c). In our previous work (Amin, 2019b), we derived the approximate KL
divergence between the two multivariate t posteriors ζ1(β | y) and ζ2(β | y) as:

KL
[
ζ1(β|y), ζ2(β|y)

]
≈

1
2

log
(
|V2|

|V1|

)
+

1
2

(
v2+m

v2

) [(
v1

v1−2

)
tr
(
V−1

2 V1

)
+(µ1−µ2)T V−1

2 (µ1−µ2)
]
−

m
2
. (4.3)

This derived approximate KL divergence is not symmetric; however, we can compute the symmetric
distance KL∗

[
ζ1(β | y), ζ2(β | y)

]
as the average of two KL divergences as follows:

KL∗
[
ζ1(β | y), ζ2(β | y)

]
=

1
2

{
KL

[
ζ1(β | y), ζ2(β | y)

]
+ KL

[
ζ2(β | y), ζ1(β | y)

]}
≈

1
4

{
tr

(
V∗

−1

1 V2 + V∗
−1

2 V1

)
+ (µ1 − µ2)T V−1(µ1 − µ2) − 2m

}
, (4.4)

where V∗1 = ((1 − 2/v2)/(1 + m/v1))V1, V∗2 = ((1 − 2/v1)/(1 + m/v2))V2, and V−1 = (1 + m/v1)V−1
1 +

(1 + m/v2)V−1
2 .

Now, we can use this derived approximate KL divergence in Equation (4.4) to study the relation
between the analytic approximations summarized in Section 3 and to measure the distance between
their approximate posteriors. To do that we have to observe two things. First, the derived approximate
KL divergence depends on the difference between the approximate posteriors means and the ratio of
the posteriors dispersions. Second, all the marginal approximate posteriors of β derived in Section 3
are multivariate t distribution with the same degrees of freedom but with different location vector and
dispersion matrix. Aiming to simplify the comparison, we compute the KL divergence between the
marginal approximate posteriors of β in the case of employong Jeffreys’ prior.

Using the location vectors and dispersion matrices given in Equations (3.8) and (3.14), we can
simplify the KL divergence between the Newbold and Zellner-Reynolds approximate posteriors of β
as:

KL∗
[
ζN

j (β | y), ζZR
j (β | y)

]
≈

1
4

 n
n − m − 2

tr

UT U
(

1
2

R
)−1

+
1
2

R
(
UT U

)−1
 − 2m

 , (4.5)

which indicates that the distance between the Newbold and Zellner-Reynolds approximate posteriors
depends mainly on the relation between the two matrices UT U and (1/2)R. To investigate this relation,
we can redefine the R matrix in Equation (3.10) by letting its i jth element to be defined as:

Ri j =
d2Q

dβi dβ j

= 2

 n∑
t=1

(
εt

∂2εt

∂βi ∂β j

)
+

n∑
t=1

(
∂εt

∂βi
×
∂εt

∂β j

)
= 2

{
Di j +

(
UT U

)
i j

}
, (4.6)
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which means (1/2)R = D + UT U and implies that UT U is a part of (1/2)R. Therefore, the distance
between the Newbold and Zellner-Reynolds approximate posteriors is expected to be very small,
i.e. they are very close to each other, especially when the matrix D closes to 0, which is evaluated
by the simulation study in the next section. Similarly, we use the location vectors and dispersion
matrices given in Equations (3.8) and (3.20) to simplify the KL divergence between the Newbold and
Broemeling-Shaarawy approximate posteriors of β as:

KL∗
[
ζN

j (β | y), ζBS
j (β | y)

]
≈

1
4

{ n
n − m − 2

tr
(
X̂T X̂

(
UT U

)−1
+ UT U

(
X̂T X̂

)−1
)

+
n(n − m − 2)
(n − m) Q̂n

(
β̂ − µBS

j

)T [
X̂T X̂ + UT U

] (
β̂ − µBS

j

)
− 2m

}
, (4.7)

which depends on the difference between the two approximate posteriors means and the ratio of the
two matrices X̂T X̂ and UT U. Since the matrix U contains more information about the unobserved er-
rors compared to the matrix X̂T , it is expected that the distance between the Newbold and Broemeling-
Shaarawy approximate posteriors is very large, i.e. they are strongly different, which we evaluate by
the simulation study in the next section. We can obtain similar conclusion about the distance between
the Zellner-Reynolds and Broemeling-Shaarawy approximate posteriors, since their KL divergence
can be simplified as:

KL∗
[
ζZR

j (β | y), ζBS
j (β | y)

]
≈

1
4

 n
n − m − 2

tr

X̂T X̂
(

1
2

R
)−1

+
1
2

R
(
X̂T X̂

)−1


+
n(n − m − 2)
(n − m) Q̂n

(
β̂ − µBS

j

)T
[
X̂T X̂ +

1
2

R
] (
β̂ − µBS

j

)
− 2m

}
. (4.8)

It has to be noted that possible values of the approximate KL divergence are non-negative with
no maximum limit, however, we can calibrate the values to be in the interval (0.5,1.0) to be able to
decide about the distance between the approximate posteriors. When the calibration value closes to
0.5, it implies the two approximate posteriors are almost the same; and when its value closes to 1.0,
the two approximate posteriors are strongly different. Suppose KL

[
ζ1(β | y), ζ2(β | y)

]
= k, using the

idea of calibration proposed by McCulloch (1989) we can compute the calibration of KL divergence
(KLC) between the two approximate posteriors as:

KLC
[
ζ1(β | y), ζ2(β | y)

]
=

1
2

{
1 − exp(−2KL

[
ζ1(β | y), ζ2(β | y)

]
)
}
. (4.9)

All the derived approximate KL divergences of the approximate posteriors and their calibration
will be used in the next section to measure the distance between these posteriors and the impact of
this distance in the Bayesian estimates using simulated and real-world time series datasets.

5. Simulation study and real application

We have two parts of work in this section. First, we present a simulation study to evaluate the KL
divergence (and its calibration) between the considered approximate posteriors of the ARMA model
coefficients and evaluate the impact of posteriors divergence in the Bayesian estimates. Second, we
present two applications of our work to real world time series datasets.
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Table 1: Results of KL divergence and its calibration (KLC) for MA(1)

θ
Sample size (n)

50 100 150 200 250 300

0.4

KL[N,ZR]∗ 0.067 0.030 0.019 0.014 0.011 0.009
KLC[N,ZR] 0.661 0.614 0.593 0.580 0.571 0.565
KL[N,BS] 0.373 0.136 0.123 0.111 0.105 0.102
KLC[N,BS] 0.725 0.703 0.695 0.689 0.685 0.683
KL[ZR,BS] 0.465 0.139 0.127 0.116 0.108 0.105
KLC[ZR,BS] 0.738 0.708 0.699 0.692 0.686 0.684

0.7

KL[N,ZR] 0.098 0.151 0.027 0.021 0.016 0.013
KLC[N,ZR] 0.679 0.628 0.604 0.592 0.582 0.574
KL[N,BS] 1.244 0.703 0.546 0.554 0.545 0.538
KLC[N,BS] 0.864 0.856 0.852 0.853 0.851 0.850
KL[ZR,BS] 1.406 0.601 0.545 0.545 0.532 0.531
KLC[ZR,BS] 0.860 0.852 0.848 0.850 0.848 0.848

∗ N, ZR and BS refer to Newbold, Zellner-Reynolds and Broemeling-Shaarawy approximate posteriors, respectively.

5.1. Simulation study

In this simulation study, we have two objectives: (1) evaluating the KL divergence (and its calibration)
between the considered approximate posteriors of the ARMA model coefficients, and (2) evaluating
the impact of this posteriors divergence in the Bayesian estimates for several simulated time series data
with different sample sizes, different ARMA model orders, and different values of the ARMA model
coefficients. In the following we discuss the simulation study design and results for each objective.

5.1.1. Evaluating the Kullback-Leibler divergence and its calibration

In order to evaluate the KL divergence (and its calibration) between the considered three approx-
imate posteriors of the ARMA model coefficients, we generate 1,000 time series of size n (from
50 to 300 with an increment value of 50) from different models: MA(1) with θ = 0.4 and 0.7,
MA(2) with (θ1, θ2) = (0.4, 0.3) and (0.3, 0.6), ARMA(1, 1) with (φ, θ) = (0.5, 0.3) and (0.4, 0.6),
ARMA(1, 2) with (φ, θ1, θ2) = (0.4, 0.5, 0.4) and (0.7, 0.3, 0.4), and ARMA(2, 2) with (φ1, φ2, θ1, θ2) =

(0.4,−0.3, 0.5, 0.4) and (1.3,−0.6, 0.3, 0.6); and in all these models we set the model variance σ2 = 1.
For each time series, we compute the location vectors and dispersion matrices given in Equations
(3.8), (3.14) and (3.20) for the Newbold, Zellner-Reynolds and Broemeling-Shaarawy approximate
posteriors of the ARMA model coefficients β. We then use these location vectors and dispersion
matrices to compute the KL divergence and its calibration between the corresponding approximate
posteriors. The average of the KL divergence and its calibration are computed and presented in Tables
1–5.

From these simulation results, we can observe some important remarks.

• First, the KL divergence between the Newbold and Zellner-Reynolds approximate posteriors is
very small especially for simple models and large sample size, for example their KL calibration
values are between 0.57 and 0.71 in most of the cases for n = 300. This confirms that the Newbold
and Zellner-Reynolds approximate posteriors are very close to each other. On contrary, the KL
divergence between the Newbold and Broemeling-Shaarawy approximate posteriors is very large,
since the KL calibration values are between 0.77 and 0.97 in most of the cases for n = 300, which
confirms that these approximate posteriors are strongly different. Similar conclusion can be drawn
about Zellner-Reynolds and Broemeling-Shaarawy approximate posteriors.

• Second, when the sample size increases the approximate posteriors divergences decreases, since
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Table 2: Results of KL divergence and its calibration (KLC) for MA(2)

(θ1, θ2) Sample size (n)
50 100 150 200 250 300

(0.4, 0.3)

KL[N,ZR] 0.188 0.083 0.053 0.039 0.031 0.025
KLC[N,ZR] 0.763 0.688 0.653 0.632 0.618 0.607
KL[N,BS] 0.618 0.274 0.236 0.217 0.211 0.205
KLC[N,BS] 0.833 0.798 0.784 0.775 0.772 0.769
KL[ZR,BS] 0.726 0.301 0.253 0.229 0.221 0.213
KLC[ZR,BS] 0.851 0.808 0.790 0.780 0.776 0.773

(0.3, 0.6)

KL[N,ZR] 0.482 0.116 0.068 0.049 0.039 0.032
KLC[N,ZR] 0.789 0.708 0.669 0.645 0.631 0.619
KL[N,BS] 2.176 0.805 0.693 0.641 0.625 0.610
KLC[N,BS] 0.910 0.895 0.891 0.886 0.883 0.882
KL[ZR,BS] 2.230 0.822 0.698 0.645 0.628 0.611
KLC[ZR,BS] 0.918 0.898 0.893 0.887 0.884 0.883

Table 3: Results of KL divergence and its calibration (KLC) for ARMA(1,1)

(φ, θ) Sample size (n)
50 100 150 200 250 300

(0.5, 0.3)

KL[N,ZR] 0.145 0.073 0.044 0.033 0.026 0.022
KLC[N,ZR] 0.738 0.673 0.640 0.623 0.610 0.600
KL[N,BS] 0.625 0.204 0.164 0.143 0.131 0.128
KLC[N,BS] 0.807 0.761 0.742 0.732 0.726 0.723
KL[ZR,BS] 0.795 0.231 0.180 0.156 0.142 0.137
KLC[ZR,BS] 0.825 0.775 0.752 0.740 0.732 0.729

(0.4, 0.6)

KL[N,ZR] 0.184 0.074 0.046 0.035 0.027 0.022
KLC[N,ZR] 0.743 0.676 0.642 0.624 0.611 0.601
KL[N,BS] 1.526 0.748 0.576 0.550 0.544 0.540
KLC[N,BS] 0.906 0.893 0.885 0.882 0.881 0.882
KL[ZR,BS] 1.719 0.730 0.598 0.561 0.550 0.547
KLC[ZR,BS] 0.911 0.894 0.885 0.882 0.881 0.882

Table 4: Results of KL divergence and its calibration (KLC) for ARMA(1,2)

(φ, θ1, θ2) Sample size (n)
50 100 150 200 250 300

(0.4, 0.5, 0.4)

KL[N,ZR] 0.440 0.198 0.107 0.080 0.062 0.048
KLC[N,ZR] 0.841 0.755 0.710 0.683 0.662 0.647
KL[N,BS] 1.991 0.873 0.722 0.666 0.649 0.628
KLC[N,BS] 0.937 0.923 0.917 0.912 0.910 0.909
KL[ZR,BS] 2.236 0.930 0.758 0.695 0.672 0.648
KLC[ZR,BS] 0.948 0.927 0.921 0.915 0.913 0.911

(0.7, 0.3, 0.4)

KL[N,ZR] 0.359 0.145 0.091 0.066 0.050 0.041
KLC[N,ZR] 0.828 0.742 0.698 0.672 0.652 0.638
KL[N,BS] 1.334 0.661 0.565 0.524 0.502 0.484
KLC[N,BS] 0.927 0.902 0.894 0.886 0.883 0.879
KL[ZR,BS] 1.467 0.701 0.591 0.545 0.517 0.498
KLC[ZR,BS] 0.937 0.909 0.898 0.890 0.886 0.882

more information are provided by the observed time series enabling the analytic approximations
to reduce the uncertainty about the model parameters. For example, in case of ARMA(1, 1) with
(φ, θ) = (0.5, 0.3), the KLC between the Newbold and Zellner-Reynolds posteriors is about 0.74 for
n = 50 and it becomes about 0.60 for n = 300; and the KLC between the Newbold and Broemeling-
Shaarawy posteriors is about 0.81 for n = 50 and it is reduced to be about 0.72 for n = 500.
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Table 5: Results of KL divergence and its calibration (KLC) for ARMA(2,2)

(φ1, φ2, θ1, θ2) Sample size (n)
50 100 150 200 250 300

(0.4,−0.3, 0.5, 0.4)

KL[N,ZR] 2.537 0.370 0.239 0.207 0.136 0.109
KLC[N,ZR] 0.902 0.817 0.776 0.749 0.724 0.706
KL[N,BS] 4.038 1.532 1.148 0.913 0.864 0.825
KLC[N,BS] 0.957 0.928 0.925 0.921 0.920 0.919
KL[ZR,BS] 6.679 1.696 1.270 1.030 0.915 0.876
KLC[ZR,BS] 0.970 0.943 0.936 0.934 0.928 0.926

(1.3,−0.6, 0.3, 0.6)

KL[N,ZR] 0.595 0.257 0.152 0.111 0.085 0.070
KLC[N,ZR] 0.887 0.798 0.747 0.715 0.692 0.676
KL[N,BS] 4.310 1.691 1.496 1.425 1.334 1.297
KLC[N,BS] 0.977 0.975 0.973 0.972 0.970 0.969
KL[ZR,BS] 4.652 1.701 1.527 1.457 1.359 1.320
KLC[ZR,BS] 0.981 0.977 0.975 0.973 0.971 0.969

• Third, the more complicated ARMA model the larger KL divergence between the approximate pos-
teriors. For example, in case of n = 100, the KLC between the Newbold and Zellner-Reynolds and
between the Newbold and Broemeling-Shaarawy posteriors are about 0.61 and 0.70 respectively for
MA(1) with θ = 0.4 and they are increased to be about 0.82 and 0.93 respectively for ARMA(2,2)
with (φ1, φ2, θ1, θ2) = (0.4,−0.3, 0.5, 0.4).

5.1.2. Evaluating the impact of posteriors distance in Bayesian estimates

In order to evaluate the distance impact of the Newbold, Zellner-Reynolds and Broemeling-Shaarawy
approximate posteriors in the Bayesian estimates of the ARMA model coefficients β, we use the
Monte Carlo simulations to obtain samples of β from these approximate posteriors as follows.

• First, we generate 1,000 time series of size n (from 50 to 300 with an increment value of 50)
from different ARMA models: MA(1) with θ = 0.4 and 0.7, MA(2) with (θ1, θ2) = (0.3, 0.6), and
ARMA(1, 1) with (φ, θ) = (0.3,−0.7); and in all these models we set the model variance σ2 = 1.

• Second, for each time series, we generate 1,000 values of β from the Newbold, Zellner-Reynolds
and Broemeling-Shaarawy marginal approximate posteriors of β.

• Third, for each Monte Carlo simulation chain of β, we compute the Bayesian estimates of β which
include mean, standard deviation, and quantiles 2.5% and 97.5% as an 95% credible interval.

• Fourth, we compute the mean absolute percentage errors (MAPE) to compare the Bayesian esti-
mates of β, obtained by simulations from different approximate posteriors, to the true value used to
generate the underlying time series.

• Fifth, we evaluate the variability of β obtained from each of the approximate posteriors by calcu-
lating the ratio of standard deviations of β from different posteriors, for each generated chain; and
then we report the mean and quantiles 2.5% and 97.5% of these ratios. Results of these simulations
are presented in Tables 6–11 and discussed in the following.

Results of the Bayesian estimates of the MA(1) coefficients are presented in Table 6 and their com-
parison criteria are presented in Table 7. From these results we can observe that the Bayesian estimates
of the coefficients mean obtained from all the approximate posteriors are almost the same, however,
the standard deviation estimates obtained from the Newbold and Zellner-Reynolds approximate poste-
riors are strongly different from those obtained form the Broemeling-Shaarawy approximate posterior.
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Table 6: Bayesian estimates of the coefficients of MA(1)

θ n ζN
j (β | y) ζZR

j (β | y) ζBS
j (β | y)

µ̂ σ̂ Q2.5% Q97.5% µ̂ σ̂ Q2.5% Q97.5% µ̂ σ̂ Q2.5% Q97.5%

0.4

50 0.413 0.016 0.108 0.715 0.413 0.018 0.108 0.715 0.410 0.020 0.107 0.708
100 0.406 0.008 0.210 0.607 0.406 0.009 0.210 0.607 0.402 0.010 0.201 0.583
150 0.405 0.006 0.242 0.562 0.405 0.006 0.242 0.562 0.403 0.007 0.236 0.567
200 0.403 0.004 0.266 0.533 0.403 0.004 0.266 0.533 0.402 0.005 0.254 0.540
250 0.402 0.003 0.283 0.520 0.402 0.003 0.283 0.520 0.401 0.004 0.272 0.530
300 0.403 0.003 0.301 0.506 0.403 0.003 0.301 0.506 0.402 0.003 0.291 0.517

0.7

50 0.723 0.010 0.483 1.000 0.723 0.011 0.483 1.000 0.715 0.020 0.405 1.007
100 0.710 0.005 0.546 0.867 0.710 0.006 0.546 0.867 0.704 0.010 0.503 0.883
150 0.707 0.003 0.576 0.831 0.707 0.004 0.576 0.831 0.704 0.007 0.536 0.862
200 0.705 0.003 0.596 0.809 0.705 0.003 0.596 0.809 0.703 0.005 0.552 0.840
250 0.704 0.002 0.614 0.795 0.704 0.002 0.614 0.795 0.702 0.004 0.574 0.828
300 0.704 0.002 0.628 0.786 0.704 0.002 0.628 0.786 0.702 0.003 0.591 0.814

Table 7: Comparison criteria between estimates from different posteriors for MA(1).

θ n MAPE σ̂ZR
j /σ̂N

j σ̂BS
j /σ̂N

j
µ̂N

j µ̂ZR
j µ̂BS

j µ̂ Q2.5% Q97.5% µ̂ Q2.5% Q97.5%

0.4

50 58.331 58.331 60.645 1.132 0.630 2.348 1.399 1.013 2.153
100 39.391 39.391 40.614 1.066 0.708 1.735 1.223 1.042 1.570
150 31.481 31.481 33.127 1.040 0.743 1.523 1.212 1.061 1.465
200 27.033 27.033 29.372 1.030 0.772 1.421 1.205 1.074 1.395
250 23.999 23.999 26.294 1.025 0.798 1.349 1.202 1.087 1.368
300 21.747 21.747 23.791 1.022 0.809 1.322 1.200 1.099 1.342

0.7

50 28.388 28.388 34.865 1.276 0.549 3.199 3.520 1.261 19.866
100 18.299 18.299 23.246 1.120 0.651 2.116 2.234 1.412 4.095
150 14.496 14.496 18.943 1.066 0.686 1.752 2.101 1.485 3.187
200 12.217 12.217 16.757 1.055 0.723 1.653 2.042 1.541 2.824
250 10.532 10.532 14.989 1.047 0.742 1.591 2.025 1.601 2.702
300 9.541 9.541 13.526 1.035 0.754 1.489 2.014 1.645 2.598

Table 8: Bayesian estimates of the coefficients of MA(2)

n ζN
j (β | y) ζZR

j (β | y) ζBS
j (β | y)

µ̂ σ̂ Q2.5% Q97.5% µ̂ σ̂ Q2.5% Q97.5% µ̂ σ̂ Q2.5% Q97.5%

θ1 = 0.3

50 0.310 0.012 0.049 0.577 0.310 0.017 0.049 0.577 0.310 0.021 0.002 0.622
100 0.303 0.006 0.139 0.471 0.303 0.007 0.139 0.471 0.301 0.010 0.099 0.486
150 0.303 0.004 0.163 0.438 0.303 0.005 0.163 0.438 0.302 0.007 0.139 0.459
200 0.301 0.003 0.184 0.419 0.301 0.003 0.184 0.419 0.302 0.005 0.154 0.438
250 0.301 0.003 0.193 0.404 0.301 0.003 0.193 0.404 0.301 0.004 0.173 0.427
300 0.301 0.002 0.207 0.395 0.301 0.002 0.207 0.395 0.302 0.003 0.189 0.417

θ2 = 0.6

50 0.641 0.012 0.330 1.000 0.641 0.015 0.330 1.000 0.621 0.021 0.298 0.956
100 0.611 0.006 0.419 0.808 0.611 0.008 0.419 0.808 0.603 0.010 0.387 0.823
150 0.606 0.004 0.471 0.745 0.606 0.005 0.471 0.745 0.601 0.007 0.429 0.772
200 0.603 0.003 0.481 0.725 0.603 0.003 0.481 0.725 0.600 0.005 0.459 0.744
250 0.602 0.003 0.500 0.703 0.602 0.003 0.500 0.703 0.599 0.004 0.480 0.721
300 0.601 0.002 0.514 0.690 0.601 0.002 0.514 0.690 0.598 0.003 0.491 0.708

For example, when n = 50 and θ = 0.7, all the approximate posteriors give a mean estimate of about
0.72, and the standard deviation estimates are 0.010, 0.011, and 0.020 obtained from the Newbold,
Zellner-Reynolds and Broemeling-Shaarawy approximate posteriors, respectively.

The results of the comparison criteria show that the Newbold and Zellner-Reynolds approximate
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Table 9: Comparison criteria between estimates from different posteriors for MA(2)

n MAPE σ̂ZR
j /σ̂N

j σ̂BS
j /σ̂N

j
µ̂N

j µ̂ZR
j µ̂BS

j µ̂ Q2.5% Q97.5% µ̂ Q2.5% Q97.5%

θ1 = 0.3

50 71.962 71.962 80.500 1.730 0.284 3.258 2.820 1.084 17.998
100 45.565 45.565 53.860 1.094 0.799 1.662 1.733 1.180 2.824
150 36.249 36.249 43.715 1.059 0.828 1.408 1.614 1.270 2.226
200 32.125 32.125 38.935 1.043 0.840 1.328 1.593 1.294 2.106
250 28.718 28.718 34.831 1.037 0.857 1.300 1.584 1.327 1.978
300 25.837 25.837 31.518 1.030 0.875 1.255 1.575 1.349 1.890

θ2 = 0.6

50 44.276 44.276 44.943 1.223 0.489 4.470 2.920 1.097 20.293
100 25.730 25.730 29.330 1.179 0.704 2.301 1.754 1.198 2.874
150 19.218 19.218 23.505 1.098 0.733 1.770 1.626 1.273 2.276
200 16.030 16.030 19.674 1.066 0.763 1.566 1.602 1.300 2.116
250 14.045 14.045 17.280 1.049 0.783 1.483 1.591 1.332 1.998
300 12.431 12.431 15.695 1.039 0.792 1.395 1.581 1.351 1.904

Table 10: Bayesian estimates of the coefficients of ARMA(1, 1)

n ζN
j (β | y) ζZR

j (β | y) ζBS
j (β | y)

µ̂ σ̂ Q2.5% Q97.5% µ̂ σ̂ Q2.5% Q97.5% µ̂ σ̂ Q2.5% Q97.5%

φ = 0.3

50 0.192 0.113 −0.733 0.645 0.192 0.088 −0.733 0.645 0.249 0.196 −0.858 0.957
100 0.274 0.035 −0.205 0.615 0.274 0.036 −0.205 0.615 0.311 0.058 −0.226 0.762
150 0.291 0.023 −0.071 0.584 0.291 0.032 −0.071 0.584 0.316 0.039 −0.116 0.711
200 0.294 0.018 −0.008 0.541 0.294 0.019 −0.008 0.541 0.317 0.029 −0.061 0.672
250 0.297 0.014 0.033 0.521 0.297 0.014 0.033 0.521 0.314 0.023 0.005 0.622
300 0.299 0.012 0.059 0.513 0.299 0.012 0.059 0.513 0.317 0.019 0.046 0.601

θ = −0.7

50 −0.628 0.091 −1.000 0.540 −0.628 0.073 −1.000 0.540 −0.674 0.218 −1.209 0.676
100 −0.698 0.022 −1.000 −0.195 −0.698 0.025 −1.000 −0.195 −0.729 0.068 −1.062 −0.207
150 −0.705 0.014 −0.924 −0.370 −0.705 0.020 −0.924 −0.370 −0.725 0.046 −1.011 −0.338
200 −0.703 0.010 −0.887 −0.458 −0.703 0.011 −0.887 −0.458 −0.723 0.034 −0.982 −0.417
250 −0.705 0.008 −0.867 −0.472 −0.705 0.008 −0.867 −0.472 −0.720 0.027 −0.944 −0.463
300 −0.704 0.007 −0.864 −0.509 −0.704 0.007 −0.864 −0.509 −0.720 0.023 −0.931 −0.480

Table 11: Comparison criteria between estimates from different posteriors for ARMA(1, 1)

n MAPE σ̂ZR
j /σ̂N

j σ̂BS
j /σ̂N

j
µ̂N

j µ̂ZR
j µ̂BS

j µ̂ Q2.5% Q97.5% µ̂ Q2.5% Q97.5%

φ = 0.3

50 84.462 84.462 100.995 0.712 0.390 3.296 2.492 0.889 8.979
100 55.174 55.174 67.819 0.968 0.595 2.942 2.081 0.931 5.954
150 42.149 42.149 52.445 2.265 0.665 2.592 1.901 0.961 4.208
200 36.603 36.603 45.429 1.083 0.678 2.081 1.777 1.018 3.595
250 31.576 31.576 39.450 1.037 0.700 1.774 1.748 1.050 3.272
300 29.338 29.338 36.662 1.028 0.724 1.710 1.724 1.097 3.065

θ = −0.7

50 34.121 34.121 41.079 0.809 0.355 5.575 10.055 1.048 72.894
100 19.429 19.429 24.556 0.911 0.445 4.614 9.783 1.200 70.867
150 14.694 14.694 19.314 0.978 0.518 3.485 7.235 1.369 21.411
200 11.755 11.755 15.667 1.141 0.558 2.443 4.385 1.611 13.234
250 9.975 9.975 13.448 1.056 0.596 2.086 4.189 1.670 10.889
300 9.274 9.274 12.541 1.055 0.614 1.960 4.122 1.779 10.158

posteriors have almost the same MAPE values that are relatively less than those of the Broemeling-
Shaarawy posterior. In addition, the ratios of standard deviations show that the standard deviation
estimates obtained from the Broemeling-Shaarawy approximate posterior are relatively very large
compared to those obtained from the Newbold and Zellner-Reynolds posteriors, which are very close.
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(b) Series B: Chemical process concentration readings

Figure 1: Time-plot of the real-world time series datasets.

We get the same conclusions from the results of MA(2) model presented in Tables 8 and 9 and
ARMA(1, 1) model presented in Tables 10 and 11 with some additional general remarks. First, when
the sample size is getting larger, the Bayesian estimates become more accurate, and hence the MAPE
values and the ratios of standard deviation estimates are highly reduced. Second, the larger coefficients
values used to generate the time series the more accurate estimates obtained from the approximate
posteriors. In general, the simulation results confirm that the Newbold and Zellner-Reynolds approx-
imate posteriors are strongly different from the Broemeling-Shaarawy approximate posterior, and the
impact of that can be observed in the Bayesian estimates of the coefficients standard deviation. Thus,
the Newbold and Zellner-Reynolds approximations reduce the posterior estimate of the coefficients
standard deviation by at least 17% in the case of simple models to 80% in the case of complicated
models compared to the Broemeling-Shaarawy approximation, which is strongly reflected in the 95%
credible intervals of the coefficients.

5.2. Application to real-world time series

We introduce two real-world time series to demonstrate how the KL divergence can be used in re-
ality to measure the distance between the derived approximate posteriors and to show the impact of
this distance in the Bayesian estimates of the model coefficients. These two real-world time series
datasets represent viscosity and concentration outputs from two different chemical processes (Box et
al., 2015). These datasets were collected on full-scale processes to show the effect on these outputs of
uncontrolled disturbances such as variations in feedstock. These two time series datasets are presented
in Figure 1.

It can observe from Figure 1 that these two time series are not stationary, so we use the first dif-
ference to stationarize them; and we then identify the best suitable order of the ARMA model for
the differenced time series datasets by using the corrected Akaike’s information criterion (AICc) with
assuming the maximum order is five for both autoregressive and moving average parts. We compute
the AICc for all the combinations of ARMA models and select the best model with smallest AICc

value, and accordingly we identify the best model for both the differenced datasets is ARMA(1, 1).
Using the identified models for these two time series datasets and employing the Jeffreys’ priors, we
first obtain the Newbold, Zellner-Reynolds and Broemeling-Shaarawy approximate posteriors of the
model coefficients. Second, we compute the KL divergence and its calibration between these approx-
imate posteriors and present their results in Table 12. Finally, we compute the Bayesian estimates for
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Table 12: Results of KL divergence and its calibration for real-world time series datasets

Dataset KL[N,ZR] KLC[N,ZR] KL[N,BS] KLC[N,BS] KL[ZR,BS] KLC[ZR,BS]
Series A 0.0248 0.6100 2.1950 0.9969 1.9265 0.9947
Series B 0.0273 0.6153 0.1145 0.7262 0.1088 0.7211

Table 13: Bayesian estimates of the coefficients for real-world time series datasets

Dataset ζN
j (β | y) ζZR

j (β | y) ζBS
j (β | y)

σ̂ZR
j /σ̂N

j σ̂BS
j /σ̂N

jµ̂ σ̂ µ̂ σ̂ µ̂ σ̂

Series A φ 0.2155 0.0092 0.2155 0.0092 0.1142 0.0138 1.0086 1.5027
θ −0.8193 0.0032 −0.8193 0.0035 −0.7267 0.0190 1.1136 5.9836

Series B φ −0.4613 0.1723 −0.4613 0.1953 −0.4082 0.2375 1.1338 1.3789
θ 0.3246 0.1956 0.3246 0.2228 0.2666 0.2431 1.1390 1.2430

the coefficients of these models and present results in Table 13. It is worth noting that these results
are consistent with our conclusions in the simulation study in previous subsection.

6. Conclusions

In this paper we first reviewed the Newbold, Zellner-Reynolds, and Broemeling-Shaarawy analytic
approximations proposed in the literature to approximate the posterior density of ARMA models to
be analytically tractable. We then derived the KL divergence between these approximate posteriors
and compute its calibration to measure the distance between these posteriors. We used a large number
of Monte Carlo simulations from the approximate posteriors to evaluate the impact of the posteriors
distance in the Bayesian estimates of mean and precision of the model coefficients. Simulation re-
sults confirmed that the Newbold and Zellner-Reynolds approximate posteriors are very close to each
other, and they are strongly different from the Broemeling-Shaarawy approximate posterior. In par-
ticular, the results demonstrated that the Newbold and Zellner-Reynolds approximations show higher
precision of the model coefficients compared to the Broemeling-Shaarawy approximation, which is
reflected in the coefficients credible intervals. We applied our work to real-world time series datasets
and their results are consistent with those of the simulation study.
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