• Title/Summary/Keyword: Apple and pear orchards

Search Result 39, Processing Time 0.03 seconds

Population density and internal distribution range of Erwinia amylovora in apple tree branches

  • Mi-Hyun Lee;Yong Hwan Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.933-944
    • /
    • 2022
  • Fire blight in apple and pear orchards, caused by Erwinia amylovora, is a global problem. Ongoing outbreaks have occurred since 2015. In 2020, 744 orchards were infected compared with 43 orchards in 2015 in Korea. When are insufficient. In Korea, all host plants in infected orchards are buried deeply with lime to eradicate the E. amylovora outbreak within a few days. Apple trees with infected trunks and branches and twigs with infected leaves and infected blooms were collected from an apple orchard in Chungju, Chungbuk province, where fire blight occurred in 2020. We used these samples to investigate the population density and internal distribution of E. amylovora on infected branches and twigs during early season infections. Infected branches and twigs were cut at 10 cm intervals from the infected site, and E. amylovora was isolated from tissue lysates to measure population density (colony-forming unit [CFU]·mL-1). The polymerase chain reaction was performed on genomic DNA using E. amylovora specific primers. Real-time polymerase chain reaction (PCR) was performed to detect E. amylovora in asymptomatic tissue. The objective of these assays was to collect data relevant to the removal of branches from infected trees during early season infection. In infected branches, high densities of greater than 106 CFU·mL-1 E. amylovora were detected within 20 cm of the infected sites. Low densities ranging from 102 to 106 CFU·mL-1 E. amylovora were found in asymptomatic tissues at distances of 40 - 75 cm from an infection site.

Investigation on the Management Status of Pear and Apple Orchards Where Fire Blight Disease Was Partially Controlled in Korea (국내 과수화상병을 부분 방제한 배와 사과 과원의 관리 현황 조사)

  • Jun Woo Cho;Eunjung Roh;Yong Hwan Lee;Seong Hwan Kim
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.316-320
    • /
    • 2023
  • Recently, the domestic plant disease control policy for fire blight has been implemented partial control in addition to burial control. In this study, an on-site management survey was conducted targeting orchards that implemented partial disease control from 2019 to 2020 in order to find efficient implementation methods for partial disease control. As a result of an investigation into 22 pear and apple orchards in Cheonan and Chungju, 7 orchards were buried. The upper part of the cut infected plants was burned at 16 orchards and covered with plastic vinyl after lime treatment at 6 orchards. The lower stumps of cut infected plants were burned at 7 orchards and covered with plastic vinyl after lime treatment at 15 orchards. There were two orchards where suckers appeared on the stumps even though covers were applied. There was no infection by Erwinia amylovora in the suckers. The conservation condition of lime treatment was good, but warning signs were absent at 6 orchards. Most orchards treated the stumps and surrounding areas with glyphosate-isopropylamine herbicide. The effect of partial control was judged to be safe.

Investigating Survival of Erwinia amylovora from Fire Blight-Diseased Apple and Pear Trees Buried in Soil as Control Measure (토양에 매몰 방제된 화상병 감염 사과와 배 나무로부터 화상병균 생존 조사)

  • Kim, Ye Eun;Kim, Jun Young;Noh, Hyeong Jin;Lee, Dong Hyeung;Kim, Su San;Kim, Seong Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.269-272
    • /
    • 2019
  • BACKGROUND: Since 2015, fire blight disease caused by Erwinia amylovora has been devastating apple and pear orchards every year. To quickly block the disease spreading, infected apple and pear trees have been buried in soil. However, concern on the possibility of the pathogen survival urgently requires informative data on the buried host plants. Therefore, this study was conducted to investigate the survival of the pathogen from the buried host plants. METHODS AND RESULTS: Apple trees buried in 42 months ago in a Jecheon site and pear trees buried in 30 months ago in an Anseong site were excavated using an excavator. Plant samples were taken from stems and twigs of the excavated trees. The collected 120 samples were checked for rotting and used for bacterial isolation, using TSA, R2A, and E. amylovora selection media. The purely isolated bacteria were identified based on colony morphology and 16S rDNA sequences. Wood rotting and decay with off smells and discoloring were observed from the samples. A total of 17 genera and 48 species of bacteria were identified but E. amylovora was not detected. CONCLUSION: Our investigation suggests that the survival of E. amylovora doesn't seem possible in the infected hosts which have been buried in soil for at least 30 months. Therefore, the burial control can be considered as a safe method for fire blight disease.

Outbreak of Phytophthora Rot on Pear Under Environmental Conditions Favorable to the Disease

  • Jee, Hyeong-Jin;Cho, Weon-Dae;Nam, Ki-Woong;Park, Young-Seob
    • The Plant Pathology Journal
    • /
    • v.17 no.4
    • /
    • pp.231-235
    • /
    • 2001
  • From April to May 1998, Phytophthora rot on pear, which has not been reported in Korea before, became an epidemic in the southeast part of the country under abnormally higher temperature and prolonged rainy days. Average temperature was about $3^{\circ}$ higher than in normal years, and 29 days were rainy during the 2 months in the areas surveyed. Over 1,000 orchards estimated at about 270 ha in 19 cultivation areas were infected by the disease, which occurred on all parts of the tree such as leaves, shoots, branches, stems, and flower clusters. Among 43 isolates collected from various locations and plant parts, 41 were identified as Phytophthora cactorum while 2 were identified as P. cambivora based on their mycological characteristics. The representative isolates revealed strong pathogenicity not only to pear but also to apple and peach. Among 23 pear cultivars tested, 7 were estimated as susceptible, 4 were moderate, and 11 were resistant to the pathogen. Results suggest that Phytophthora disease on pear is a potential threat to pear cultivation when environmental factors are favorable to disease development.

  • PDF

Development of an Improved Loop-Mediated Isothermal Amplification Assay for On-Site Diagnosis of Fire Blight in Apple and Pear

  • Shin, Doo-San;Heo, Gwang-Il;Son, Soo-Hyeong;Oh, Chang-Sik;Lee, Young-Kee;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.191-198
    • /
    • 2018
  • Fast and accurate diagnosis is needed to eradicate and manage economically important and invasive diseases like fire blight. Loop-mediated isothermal amplification (LAMP) is known as the best on-site diagnostic, because it is fast, highly specific to a target, and less sensitive to inhibitors in samples. In this study, LAMP assay that gives more consistent results for on-site diagnosis of fire blight than the previous developed LAMP assays was developed. Primers for new LAMP assay (named as DS-LAMP) were designed from a histidine-tRNA ligase gene (EAMY_RS32025) of E. amylovora CFBP1430 genome. The DS-LAMP amplified DNA (positive detection) only from genomic DNA of E. amylovora strains, not from either E. pyrifoliae (causing black shoot blight) or from Pseudomonas syringae pv. syringae (causing shoot blight on apple trees). The detection limit of DS-LAMP was 10 cells per LAMP reaction, equivalent to $10^4$ cells per ml of the sample extract. DS-LAMP successfully diagnosed the pathogens on four fire-blight infected apple and pear orchards. In addition, it could distinguish black shoot blight from fire blight. The $B{\ddot{u}}hlmann$-LAMP, developed previously for on-site diagnosis of fire blight, did not give consistent results for specificity to E. amylovora and on-site diagnosis; it gave positive reactions to three strains of E. pyrifoliae and two strains of P. syringae pv. syringae. It also, gave positive reactions to some healthy sample extracts. DS-LAMP, developed in this study, would give more accurate on-site diagnosis of fire blight, especially in the Republic of Korea, where fire blight and black shoot blight coexist.

Survey of Oxolinic Acid-Resistant Erwinia amylovora in Korean Apple and Pear Orchards, and the Fitness Impact of Constructed Mutants

  • Ham, Hyeonheui;Oh, Ga-Ram;Park, Dong Suk;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.482-489
    • /
    • 2022
  • Fire blight caused by Erwinia amylovora (Ea) is a devastating disease in apple and pear trees. Oxolinic acid (OA), a quinolone family antibiotic that inhibits DNA gyrase, has been employed to control fire blight in South Korea since 2015. The continuous use of this bactericide has resulted in the emergence of OA-resistant strains in bacterial pathogens in other countries. To investigate the occurrence of OA-resistant Ea strains in South Korea, we collected a total of 516 Ea isolates from diseased apple and pear trees in 2020-2021 and assessed their sensitivities to OA. We found that all isolates were susceptible to OA. To explore the possibility of emerging OA-resistant Ea by continuous application of OA, we exposed Ea stains to a range of OA concentrations and constructed OA-resistant mutant strains. Resistance was associated with mutations in the GyrA at codons 81 and 83, which result in glycine to cysteine and serine to arginine amino acid substitutions, respectively. The in vitro growth of the mutants in nutrient media and their virulence in immature apple fruits were lower than those of wild-type. Our results suggest that OA-resistance decreases the fitness of Ea. Future work should clarify the mechanisms by which OA-resistance decreases virulence of this plant pathogen. Continuous monitoring of OA-resistance in Ea is required to maintain the efficacy of this potent bactericide.

Analysis of Pesticide Applications on Apple Orchards in Geochang, Korea (거창지역 사과원 농약사용 실태분석)

  • Jang, Il;Kim, Hyang-Mi;Lee, Soon-Won;Choi, Kyung-Hee;Suh, Sang Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.2
    • /
    • pp.93-100
    • /
    • 2015
  • This study surveyed the selling, buying, usage, selection and spraying frequency of pesticides on apple orchards in Geochang, Gyeongsangnam-do province from 2012 to 2013 and found that the fungicides, insecticides and acaricides were sprayed $13.9{\pm}3.5$, $12.6{\pm}3.2$, and $2.6{\pm}1.3$ times per year, respectively. Fungicides were applied mainly to control for Diplocarpon mali, Colletotrichum gloeosporoides and Alternaria mali, whereas insecticides were sprayed mostly to control Grapholita molesta, Carposina sasakii insects. Dealers sold pesticides without monitoring of the pests in the apple orchards, and also sometimes sold pesticides which are non-registered for apple. Most of the farmers were highly relied on dealers' recommendations to choosing the brand product. Relating on Integrated Pest Management (IPM) on apple orchards in Geochang, residual active ingredient of frequently sprayed fungicides, insecticides, and acaricides were analyzed. Most applications of the fungicides, insecticides and acaricides were well corresponded with FAO's recommendations. For production of safe food and use of pesticides, it is requested to develope control calender and consideration of training program for farmers. The regional characteristics and environmental situation of the farm also should be considered.

Fruit Dieting Behavior of Black-billed Magpies, Azure-winged Magpies, and Brown-eared Bulbuls in the Cage (사육상에서 까치, 물까치, 직박구리의 과실먹이 섭식행동)

  • Song, Jang-Hoon;Shin, Gil-Ho;Cho, Young-Sik;Park, Jang-Hyun;Lee, Han-Chan
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.85-89
    • /
    • 2012
  • To investigate the bird's dieting behavior for several fruits in orchards, this study was carried out in 2008. Black-billed magpies (Pica pica), azure-winged magpies (Cyanopica cyanus), and brown-eared bulbuls (Hypsipetes amaurotis) made their unique marks on the surface of pear and apple fruits; black-billed magpies pecked fruits strongly and left round holes with perpendicular angle, whereas those of azure-winged magpies and brown-eared bulbuls were sack-shaped with narrow neck and marked unique stripes on the skin. For the fruits of pear and apple from bagging practices, the birds showed different foraging behavior; black-billed magpies could injure all kinds of fruits whether with paper bags or not, but azure-winged magpies and brown-eared bulbuls could not attack the fruits with paper bag. Azure-winged magpies and brown-eared bulbuls preferred pear fruits to those of apples and satsuma mandarins in the cage trials. To reduce the injuries by azure-winged magpies and brown-eared bulbuls on pear and apple fruit, wrapping bag should not be impaired. Introducing azure-winged magpies to Cheju should be prohibited for the potential citrus injury by them.

Genetic Diversity of a Natural Population of Apple stem pitting virus Isolated from Apple in Korea

  • Yoon, Ju Yeon;Joa, Jae Ho;Choi, Kyung San;Do, Ki Seck;Lim, Han Cheol;Chung, Bong Nam
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.195-199
    • /
    • 2014
  • Apple stem pitting virus (ASPV), of the Foveavirus genus in the family Betaflexiviridae, is one of the most common viruses of apple and pear trees. To examine variability of the coat protein (CP) gene from ASPV, eight isolates originating from 251 apple trees, which were collected from 22 apple orchards located in intensive apple growing areas of the North Gyeongsang and North Jeolla Provinces in Korea, were sequenced and compared. The nucleotide sequence identity of the CP gene of eight ASPV isolates ranged from 77.0 to 97.0%, while the amino acid sequence identity ranged from 87.7 to 98.5%. The N-terminal region of the viral CP gene was highly variable, whereas the C-terminal region was conserved. Genetic algorithm recombination detection (GARD) and single breakpoint recombination (SBP) analyses identified base substitutions between eight ASPV isolates at positions 54 and 57 and position 771, respectively. GABranch analysis was used to determine whether the eight isolates evolved due to positive selection. All values in the GABranch analysis showed a ratio of substitution rates at non-synonymous and synonymous sites (dNS/dS) below 1, suggestive of strong negative selection forces during ASPV CP history. Although negative selection dominated CP evolution in the eight ASPV isolates, SLAC and FEL tests identified four possible positive selection sites at codons 10, 22, 102, and 158. This is the first study of the ASPV genome in Korea.

Outbreak of Fire Blight of Apple and Pear and Its Characteristics in Korea in 2019 (2019년 국내 사과와 배 화상병 대발생과 그 특징)

  • Ham, Hyeonheui;Lee, Kyong Jae;Hong, Seong Jun;Kong, Hyun Gi;Lee, Mi-Hyun;Kim, Hyun-Ran;Lee, Yong Hwan
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.239-249
    • /
    • 2020
  • To find out the cause of the fire blight outbreak in apples and pears of Korea in 2019, we investigated disease appearing situation of thirty fire blight infected orchards, and interviewed farmers to determine the cultivation characteristics. Fire blight occurred mostly in orchards that had infected more than 2 years before. The cause of this were as follows: farmers did not know the symptoms of the disease properly. It is presumed that it has spread from the first occurrence to the surrounding orchards by flower-visiting insects or farmers and to a short distance or a long distance by the same cultivator or co-farmer. These series of processes repeated in the newly spreading area, and then disease reports increased as farmers became aware of fire blight. To minimize the spread of fire blight in Korea, it suggested that thorough education of farmers for early diagnosis and quantitative detection technology that can diagnose even in no symptom showing plants. And chemical or biological spraying systems suitable for domestic cultivation methods, which are producing large fruits, and molecular epidemiological studies of pathogens.