Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.04.2022.0059

Survey of Oxolinic Acid-Resistant Erwinia amylovora in Korean Apple and Pear Orchards, and the Fitness Impact of Constructed Mutants  

Ham, Hyeonheui (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Oh, Ga-Ram (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Park, Dong Suk (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Yong Hoon (Division of Biotechnology, Jeonbuk National University)
Publication Information
The Plant Pathology Journal / v.38, no.5, 2022 , pp. 482-489 More about this Journal
Abstract
Fire blight caused by Erwinia amylovora (Ea) is a devastating disease in apple and pear trees. Oxolinic acid (OA), a quinolone family antibiotic that inhibits DNA gyrase, has been employed to control fire blight in South Korea since 2015. The continuous use of this bactericide has resulted in the emergence of OA-resistant strains in bacterial pathogens in other countries. To investigate the occurrence of OA-resistant Ea strains in South Korea, we collected a total of 516 Ea isolates from diseased apple and pear trees in 2020-2021 and assessed their sensitivities to OA. We found that all isolates were susceptible to OA. To explore the possibility of emerging OA-resistant Ea by continuous application of OA, we exposed Ea stains to a range of OA concentrations and constructed OA-resistant mutant strains. Resistance was associated with mutations in the GyrA at codons 81 and 83, which result in glycine to cysteine and serine to arginine amino acid substitutions, respectively. The in vitro growth of the mutants in nutrient media and their virulence in immature apple fruits were lower than those of wild-type. Our results suggest that OA-resistance decreases the fitness of Ea. Future work should clarify the mechanisms by which OA-resistance decreases virulence of this plant pathogen. Continuous monitoring of OA-resistance in Ea is required to maintain the efficacy of this potent bactericide.
Keywords
antibiotic resistance; Erwinia amylovora; gyrA; oxolinic acid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Eaves, D. J., Randall, L., Gray, D. T., Buckley, A., Woodward, M. J., White, A. P. and Piddock, L. J. V. 2004. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob. Agents Chemother. 48:4012-4015.   DOI
2 Entenza, J. M., Giddey, M., Vouillamoz, J. and Moreillon, P. 2010. In vitro prevention of the emergence of daptomycin resistance in Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin. Int. Antimicrob. Agents 35:451-456.   DOI
3 Ham, H., Lee, K. J., Hong, S. J., Kong, H. G., Lee, M.-H., Kim, H.-R. and Lee, Y. H. 2020. Outbreak of fire blight of apple and pear and its characteristics in Korea in 2019. Res. Plant Dis. 26:239-249 (in Korean).   DOI
4 Horowitz, D. S. and Wang, J. C. 1987. Mapping the active site tyrosine of Escherichia coli DNA gyrase. J. Biol. Chem. 262:5339-5344.   DOI
5 Kleitman, F., Shtienberg, D., Blachinsky, D., Oppenheim, D., Zilberstaine, M., Dror, O. and Manulis, S. 2005. Erwinia amylovora populations resistant to oxolinic acid in Israel: prevalence, persistence and fitness. Plant Pathol. 54:108-115.   DOI
6 Kumagai, Y., Kato, J.-I., Hoshino, K., Akasaka, T., Sato, K. and Ikeda, H. 1996. Quinolone-resistant mutants of Escherichia coli DNA topoisomerase IV parC gene. Antimicrob. Agents Chemother. 40:710-714.   DOI
7 Levine, C., Hiasa, H. and Marians, K. J. 1998. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta 1400:29-43.   DOI
8 Li, Z., Kelley, C., Collins, F., Rouse, D. and Morris, S. 1998. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J. Infect. Dis. 177:1030-1035.   DOI
9 Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2004. Implications of amino acid substitutions in gyrA at position 83 in terms of oxolinic acid resistance in field isolates of Burkholderia glumae, a causal agent of bacterial seedling rot and grain rot of rice. Appl. Environ. Microbiol. 70:5613-5620.   DOI
10 Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2007. Amino acid substitutions in GyrA of Burkholderia glumae are implicated in not only oxolinic acid resistance but also fitness on rice plants. Appl. Environ. Microbiol. 73:1114-1119.   DOI
11 Manulis, S., Kleitman, F., Shtienberg, D., Shwartz, H., Oppenheim, D., Zilberstaine, M. and Shabi, E. 2003. Changes in the sensitivity of Erwinia amylovora populations to streptomycin and oxolinic acid in Israel. Plant Dis. 87:650-654.   DOI
12 McGhee, G. C. and Sundin, G. W. 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. Phytopathology 101:192-204.   DOI
13 Stockwell, V. O. and Duffy, B. 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 31:199-210.   DOI
14 Yonezawa, M., Takahata, M., Matsubara, N., Watanabe, Y. and Narita, H. 1995. DNA gyrase gyrA mutations in quinoloneresistant clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39:1970-1972.   DOI
15 Yoshida, H., Bogaki, M., Nakamura, M. and Nakamura, S. 1990. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34:1271-1272.   DOI
16 Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J., Myung, I.-S., Shim, H. S. and Oh, C.-S. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946.
17 Feng, X., Zhang, Z., Li, X., Song, Y., Kang, J., Yin, D., Gao, Y., Shi, N. and Duan, J. 2019. Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infect. Drug Resist. 12:261-272.   DOI
18 Hikichi, Y. 1993. Antibacterial activity of oxolinic acid on Pseudomonas glumae. Ann. Phytopathol. Soc. Jpn. 59:369-374.   DOI
19 Norelli, J. L., Jones, A. L. and Aldwinckle, H. S. 2003. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 87:756-765.   DOI
20 Park, D. H., Lee, Y.-G., Kim, J.-S., Cha, J.-S. and Oh, C.-S. 2017. Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J. Plant Pathol. 99:59-63.
21 Paulander, W., Maisnier-Patin, S. and Andersson, D. I. 2009. The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σs). Genetics 183:539-546.   DOI
22 Pym, A. S., Saint-Joanis, B. and Cole, S. T. 2002. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70:4955-4960.   DOI
23 Hikichi, Y., Okuno, T. and Furusawa, I. 1994. Susceptibility of rice spikelets to infection with Pseudomonas glumae and its population dynamics. J. Pestic. Sci. 19:11-17.   DOI
24 Ruiz, J. 2003. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother. 51:1109-1117.   DOI
25 Shabi, E. and Zutra, D. 1987. Outbreaks of fire blight in Israel in 1985 and 1986. Acta Hortic. 217:23-32.   DOI
26 Shtienberg, D., Shwartz, H., Oppenheim, D., Zilberstaine, M., Herzog, Z., Manulis, S. and Kritzman, G. 2003. Evaluation of local and imported fire blight warning systems in Israel. Phytopathology 93:356-363.   DOI
27 Kang, I.-J., Park, D. H., Lee, Y.-K., Han, S.-W., Kwak, Y.-S. and Oh, C.-S. 2021. Complete genome sequence of Erwinia amylovora strain TS3128, a Korean strain isolated in an Asian pear orchard in 2015. Microbiol. Resour. Announc. 10:e00694-21.
28 Lee, M. S., Lee, I., Kim, S. K., Oh, C.-S. and Park, D. H. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 24:41-51 (in Korean).   DOI
29 Luo, N., Pereira, S., Sahin, O., Lin, J., Huang, S., Michel, L. and Zhang, Q. 2005. Enhanced in vivo fitness of fluoroquinoloneresistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. U. S. A. 102:541-546.   DOI
30 Manulis, S., Kleitman, F., Dror, O. and Shabi, E. 2000. Isolation of strains of Erwinia amylovora resistant to oxolinic acid. IOBC WPRS Bull. 23:89-92.
31 McManus, P. S. and Jones, A. L. 1994. Epidemiology and genetic analysis of streptomycin-resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology 84:627-633.   DOI
32 Shtienberg, D., Zilberstaine, M., Oppenheim, D., Herzog, Z., Manulis, S., Shwartz, H. and Kritzman, G. 2001. Efficacy of oxolinic acid and other bactericides in suppression of Erwinia amylovora in pear orchards in Israel. Phytoparasitica 29:143-154.   DOI
33 McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465.   DOI
34 Melnyk, A. H., Wong, A. and Kassen, R. 2015. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8:273-283.   DOI
35 Momol, M. T., Norelli, J. L., Piccioni, D. E., Momol, E. A., Gustafson, H. L., Cummins, J. N. and Aldwinckle, H. S. 1998. Internal movement of Erwinia amylovora through symptomless apple scion tissues into the rootstock. Plant Dis. 82:646-650.   DOI
36 Wong-Beringer, A., Wiener-Kronish, J., Lynch, S. and Flanagan, J. 2008. Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 14:330-336.   DOI
37 Bonn, W. G. and van der Zwet, T. 2000. Distribution and economic importance of fire blight. In: Fire blight: the disease and its causative agent, Erwinia amylovora, ed. by J. L. Vanneste, pp. 37-53. CAB International, Wallingford, UK.
38 Acimovic, S. G., Zeng, Q., McGhee, G. C., Sundin, G. W. and Wise, J. C. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesisrelated protein genes. Front. Plant Sci. 6:16.
39 Andersson, D. I. and Hughes, D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8:260-271.   DOI
40 Bereswill, S., Pahl, A., Bellemann, P., Zeller, W. and Geider, K. 1992. Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis. Appl. Environ. Microbiol. 58:3522-3526.   DOI
41 Calzolari, A., Finelli, F. and Mazzoli, G. L. 1999. A severe unforeseen outbreak of fire blight in the Emilia-romagna region. Acta Hortic. 489:171-176.   DOI
42 Collin, F., Karkare, S. and Maxwell, A. 2011. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl. Microbiol. Biotechnol. 92:479-497.   DOI