• Title/Summary/Keyword: Antioxidant responses

Search Result 254, Processing Time 0.025 seconds

Effects of Chitosan Treatment on Changes of Soyasaponin Contents in Soybean Sprouts (키토산 처리가 콩나물의 Soyasaponin 함량변화에 미치는 효과)

  • Oh, Bong-Yun;Park, Bock-Hee;Ham, Kyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.5
    • /
    • pp.584-588
    • /
    • 2007
  • Elicitors are defined as substances that induce defense responses in plants, which include an increased synthesis of secondary metabolites. Saponin, one of the secondary metabolites, has various physiological effects such as anticancer, antioxidant, cholesterol-lowering activities, etc, in human. This study was carried out to find whether a treatment of soybean sprouts with chitosan as an elicitor, increases saponin contents. Saponin contents in soybean sprouts increased by the chitosan treatment during cultivation, reached the peak on the sixth day, and then decreased. A biosynthesis of group B soyasaponin appeared to be regulated differently. The content of soyasaponin I, a member of group B saponin, was the highest in 250 ppm chitosan-treated soybean sprouts, while the contents of soyasaponin II, III and IV were the highest in 1,000 ppm chitosan-treated soybean sprouts. The content of soyasaponin V changed little in soybean sprouts that had been treated with various concentration of chitosan.

Enhanced Production of Astaxanthin by Archaea Chaperonin in Escherichia coli (대장균에서 고세균 샤페론을 이용한 아스타잔틴 생산능 향상을 위한 연구)

  • Seo, Yong Bae;Lee, Jong Kyu;Jeong, Tae Hyug;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1339-1346
    • /
    • 2015
  • The aim of this study is to increase production of carotenoids in recombinant Escherichia coli by Archaea chaperonin. The carotenoids are a widely distributed class of structurally and functionally diverse yellow, orange, and red natural pigments. These pigments are synthesized in bacteria, algae, fungi, and plants, and have been widely used as a feed supplement from poultry rearing to aquaculture. Carotenoids also exhibit diverse biological properties, such as strong antioxidant and antitumor activities, and enhancement of immune responses. In the microbial world, carotenoids are present in both anoxygenic and oxygenic photosynthetic bacteria and algae and in many fungi. We have previously reported cloning and functional analysis of the carotenoid biosynthesis genes from Paracoccus haeundaensis. The carotenogenic gene cluster involved in astaxanthin production contained seven carotenogenic genes (crtE, crtB, crtI, crtY, crtZ, crtW and crtX genes) and recombinant Escherichia coli harboring seven carotenogenic genes from Paracoccus haeundaensis produced 400 μg/g dry cell weight (DCW) of astaxanthin. In order to increase production of astaxanthin, we have co-expressed chaperone genes (ApCpnA and ApCpnB) in recombinant Escherichia coli harboring the astaxanthin biosynthesis genes. This engineered Escherichia coli strain containing both chaperone gene and astaxanthin biosynthesis gene cluster produced 890 μg/g DCW of astaxanthin, resulting 2-fold increased production of astaxanthin.

Evaluation of Achyranthes japonica Ethanol Extraction on the Inhibition Effect of Hyluronidase and Lipoxygenase (쇠무릎 에탄올 추출물의 DPPH, 히알루로니다아제 및 리폭시게나아제 저해 효과)

  • Cho, Kyung-Soon
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1370-1376
    • /
    • 2015
  • The 1, 1- diphenyl 2-picrylhyorazyl (DPPH) is a well-known radical and a trap (scavenger) for other radicals. Hyaluronidase (HAase) is an enzyme that depolymerizes the polysaccharide hyaluronic acid (HA) in the extracellular matrix of connective tissue. Lipoxygenase (LOX) enzyme was reported to convert the arachidonic, linoleic and other polyunsaturated fatty acid into biologically active metabolites involved in the inflammatory and immune responses. The purpose of the present study is to evaluate plant extracts as sources of natural antioxidants and to examine whether Achyranthes japonica having significant DPPH, HAase and LOX inhibitory activity. The inhibitory effect of HAase by A. japonica was assayed using a Morgan microplate assay. The antioxidant activity of the A. japonica extracts was measured on the basis of the scavenging activity of the stable 1, 1- diphenyl 2-picrylhyorazyl (DPPH) free radical. DPPH scavenging activity of matured roots of A. japonica was evaluated at 4.0 mg/ml was 87.8% and that of young roots was 86.2% at same concentration. The roots of A. japonica showed maximum inhibition of HAase activity (IC50 = 27.7 μg/ml). The highest LOX inhibition was recorded in the root extract among three vegetative parts. Inhibition of HAase activity of roots may contribute towards the development of herbal medicines. Although percent inhibition of lipoxygenase by Achyranthes japonica for all young and matured groups for leaves, stems, and roots at different concentrations, there were not show a statistically significant difference (p<0.05).

Changes on Photosynthesis and SOD Activity in Platanus orientalis and Liriodendron tulipifera According to Ozone Exposing Period (오존 노출 시간에 따른 버즘나무와 백합나무의 광합성과 SOD 활성 변화)

  • Lee Jae-Cheon;Oh Chang-Young;Han Sim-Hee;Kim Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.156-163
    • /
    • 2005
  • This study was conducted to compare the physiological and biochemical responses of P. orientalis and L. tulipifera in response to ozone. One-year-old seedlings of P. orientalis and L. tulipifera were exposed to 100 ppb ozone concentration for 2, 4, or 8 hr/day for 1 week. Photosynthesis, stomatal conductance and ozone uptake rate were measured daily, and chlorophyll fluorescence, carboxylation efficiency, chlorophyll content, and SOD activity were measured after 1 week. In P. orientalis, photosynthesis and stomatal conductance were not decreased in the 2h/day ozone treatment, but the L. tulipifera response was more sensitive even in the 2h/day ozone treatment. Increased treatment time decreased photosynthesis and stomatal conductance. Chlorophyll fluorescence was not significantly different among treatment times. However, carboxylation efficiency decreased with increased treatment time, and L. tulipifera was more sensitive than P. orientalis. Chlorophyll content did not differ with species or treatment time. SOD activity response was greater in L. tulipifera than in P. orientalis, increasing to $131\%$ of pretreatment observations. Therefore it was concluded that L. tulipifera was more responsive and had lower ozone tolerance than P. orientalis.

Paraquat Toxicity in Weed Species : Difference in Physiological Responses between Tolerant and Susceptible Species (잡초종(雜草種)에 대한 Paraquat 독성(毒性) : 내성종(耐性種)과 감수성(感受性) 종간(種間)의 반응(反應) 차이(差異))

  • Kang, B.H.;Shim, S.I.
    • Korean Journal of Weed Science
    • /
    • v.15 no.3
    • /
    • pp.224-231
    • /
    • 1995
  • Paraquat, the representative bipyridilium herbicide, has high phytotoxic activity through generating toxic oxygen species such as superoxide, hydrogen peroxide and hydroxy radical. The response patterns of plants to paraquat were various. It was assumed that the different response was derived from different antioxidative mechanisms including antioxidative enzymes and antioxidant. Paraquat treatment increased reducing sugar content and malondialdehyde formation at 35 days after treatment in a dose-dependent manner but chlorophyll content decreased. Glutathione content increased by paraquat treatment and tolerant species showed more glutathione content than susceptible species. Superoxide dismutase activity increased with the increase in paraquat concentration and that was higher in tolerant species than susceptible species. Photosynthetic activity(PSII activity) was affected by paraquat, so the susceptible species showed more reduced oxygen evolving capacity than tolerant species. Catalse, NADPH-cytochrome C reductase, and malate dehydrogenase, the enzymes tested in this study, showed that the activities decreased by paraquat treatment. Further studies are necessary to determine whether antioxidative system cause the tolerance to paraquat.

  • PDF

Mechanism of Protoporphyrinogen Oxidase-inhibiting Herbicide, Oxyfluorfen Tolerance in Squash leaves of Various Ages (Protoporphyrinogen Oxidase 저해형 제초제 Oxyfluorfen에 대한 호박 엽령별 내성기작)

  • Kuk, Yong-In;Yun, Young-Beom
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.111-121
    • /
    • 2010
  • Differential tolerance to protoporphyrinogen oxidase (Protox)-inhibiting herbicides, oxyfluorfen was observed between leaf ages in squash. Physiological responses to oxyfluorfen, including leaf injury, cellular leakage, accumulation of tetrapyrroles, and antioxidative enzymes activity, were investigated in leaf age classes of squash to identify mechanisms of oxyfluorfen tolerance. Leaf 1, 2, and 3 injuries for Joongangaehobak were >10,000, 1,286, and 1.6-fold higher than that of leaf 4, after treatment of oxyfluorfen. On the other hand, leaf 1, 2, and 3 injuries for Sintowjahobak were 725, 366, and >0.6-fold higher than that of leaf 4, after treatment of oxyfluorfen. However, in contrast to oxyfluorfen treatment results, leaf injury of squash leaf 4 treated with paraquat was much smaller than in leaves 1, 2 and 3. Electrolyte leakage from the tissues treated with oxyfluorfen was higher in the youngest leaf (Leaf 4) than in the older leaves 1, 2, and 3. Differential leaf response to oxyfluorfen of squash appears to be due in large part to differences in protoporphyrin IX (Proto IX), Mg-Proto IX, and Mg-Proto IX monomethyl ester accumulation in treated leaves. In contrast, leaf 4 had higher activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase than leaf 1 after treatment with oxyfluorfen. However, the induction in antioxidant activity in leaf 4 was not enough to overcome the toxic effects of a Protox inhibitor, oxyfluorfen, so the leaf eventually died.

Effects of Different Levels of Oxytetracycline on Physiological and Bio- chemical Responses in Olive Flounder, Paralichthys olivaceus (넙치, Paralichthys olivaceus에서의 Oxytetracyline 처리 농도가 생리ㆍ생화학적 반응에 미치는 영향)

  • 양정환;여인규
    • Journal of Aquaculture
    • /
    • v.17 no.4
    • /
    • pp.268-274
    • /
    • 2004
  • Olive flounder was treated with oxytetracycline (OTC) and changes in blood physiology, antioxidant enzymes and heat shock protein (HSP) were recorded to obtain preliminary data for optimal OTC treatment. Blood parameters were measured 1 and 3 h after the OTC treatments at the concentration of 0 (control), 100, 300 and 500 ppm for I h. Hematocrit decreased with time, however the difference was not significant (P>0.05). Reduced number of red blood cell was observed with increasing OTC concentration. Serum glucose level increased as the OTC concentration increased. However, glucose level was similar to control after 3 h. Blood total protein decreased immediately after the OTC treatment but increased after 1 and 3 h. However, the increment in blood total protein was low. Activities of superoxide dismutase enzymes in 300 and 500 ppm groups increased by the OTC concentration. Catalase enzyme activity was negatively affected by the OTC concentration. However, the differences were not significant (P>0.05). High expression of HSP-70 protein was recorded for groups treated with 100 and 500 ppm compared to that of the control group. However HSP-70 mRNA showed a lower increment which was not significant (P>0.05).

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

Effects of Microencapsulation Using Maltodextrin and/or Cyclodextrin on Water Absorption and Bioactivity of Corn Silk Extract (말토덱스트린 또는 사이클로덱스트린을 이용한 미세캡슐화공정이 옥수수 수염 추출물의 수분흡습과 생리활성에 미치는 영향)

  • Lee, In Gyeong;Lim, Ji Eun;Kim, Sun Lim;Kang, Hyeon Jung;Kim, Woo Kyoung;Kim, Myung Hwan
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.292-298
    • /
    • 2017
  • The aim of this study was to evaluate the effects of microencapsulation on the water absorption, DPPH radical scavenging activity (DRSA), hydroxyl radical scavenging activity (HRSA) and tyrosinase inhibition activity (TIA) in corn silk extracts. The lowest value (0.20) of water absorption index (WAI) and the highest value (95.23%) of water solubility index (WSI) were maltodextrin+cyclodextrin microencapulated corn silk extracts (MD+CD) and cyclodextrin encapulated corn silk extracts (CD), respectively. The 18.60% for DRSA value of control was increased to 89.25% for that of CD. The 16.89% for HRSA value of control was increased to 47.46%, and 7.16% for TIA value of control was increased to 39.35% for that of MD+CD, respectively. The MD+CD would be used for functional food and cosmetics materials as antioxidant and skin whitening agents. All investigated responses between control and treatment were statistically significant (p<0.05).

In-feed organic and inorganic manganese supplementation on broiler performance and physiological responses

  • de Carvalho, Bruno Reis;Ferreira Junior, Helvio da Cruz;Viana, Gabriel da Silva;Alves, Warley Junior;Muniz, Jorge Cunha Lima;Rostagno, Horacio Santiago;Pettigrew, James Eugene;Hannas, Melissa Izabel
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1811-1821
    • /
    • 2021
  • Objective: A trial was conducted to investigate the effects of supplemental levels of Mn provided by organic and inorganic trace mineral supplements on growth, tissue mineralization, mineral balance, and antioxidant status of growing broiler chicks. Methods: A total of 500 male chicks (8-d-old) were used in 10-day feeding trial, with 10 treatments and 10 replicates of 5 chicks per treatment. A 2×5 factorial design was used where supplemental Mn levels (0, 25, 50, 75, and 100 mg Mn/kg diet) were provided as MnSO4·H2O or MnPro. When Mn was supplied as MnPro, supplements of zinc, copper, iron, and selenium were supplied as organic minerals, whereas in MnSO4·H2O supplemented diets, inorganic salts were used as sources of other trace minerals. Performance data were fitted to a linearbroken line regression model to estimate the optimal supplemental Mn levels. Results: Manganese supplementation improved body weight, average daily gain (ADG) and feed conversion ratio (FCR) compared with chicks fed diets not supplemented with Mn. Manganese in liver, breast muscle, and tibia were greatest at 50, 75, and 100 mg supplemental Mn/kg diet, respectively. Higher activities of glutathione peroxidase and superoxide dismutase (total-SOD) were found in both liver and breast muscle of chicks fed diets supplemented with inorganic minerals. In chicks fed MnSO4·H2O, ADG, FCR, Mn balance, and concentration in liver were optimized at 59.8, 74.3, 20.6, and 43.1 mg supplemental Mn/kg diet, respectively. In MnPro fed chicks, ADG, FCR, Mn balance, and concentration in liver and breast were optimized at 20.6, 38.0, 16.6, 33.5, and 62.3 mg supplemental Mn/kg, respectively. Conclusion: Lower levels of organic Mn were required by growing chicks for performance optimization compared to inorganic Mn. Based on the FCR, the ideal supplemental levels of organic and inorganic Mn in chick feeds were 38.0 and 74.3 mg Mn/kg diet, respectively.