Effects of Different Levels of Oxytetracycline on Physiological and Bio- chemical Responses in Olive Flounder, Paralichthys olivaceus

넙치, Paralichthys olivaceus에서의 Oxytetracyline 처리 농도가 생리ㆍ생화학적 반응에 미치는 영향

  • 양정환 (제주대학교 해양과학부, 해양과환경연구소) ;
  • 여인규 (제주대학교 해양과학부, 해양과환경연구소)
  • Published : 2004.11.01

Abstract

Olive flounder was treated with oxytetracycline (OTC) and changes in blood physiology, antioxidant enzymes and heat shock protein (HSP) were recorded to obtain preliminary data for optimal OTC treatment. Blood parameters were measured 1 and 3 h after the OTC treatments at the concentration of 0 (control), 100, 300 and 500 ppm for I h. Hematocrit decreased with time, however the difference was not significant (P>0.05). Reduced number of red blood cell was observed with increasing OTC concentration. Serum glucose level increased as the OTC concentration increased. However, glucose level was similar to control after 3 h. Blood total protein decreased immediately after the OTC treatment but increased after 1 and 3 h. However, the increment in blood total protein was low. Activities of superoxide dismutase enzymes in 300 and 500 ppm groups increased by the OTC concentration. Catalase enzyme activity was negatively affected by the OTC concentration. However, the differences were not significant (P>0.05). High expression of HSP-70 protein was recorded for groups treated with 100 and 500 ppm compared to that of the control group. However HSP-70 mRNA showed a lower increment which was not significant (P>0.05).

본 연구에서는 넙치, Paralichthys olivaceus를 이용하여 oxytetracycline (OTC)처리농도에 따른 체내에서 혈액 생리학적인 변화, 항산화 효소 및 열충격단백질(HSP)등의 변화를 조사하여 항생제의 안정적인 사용에 대한 기초 자료를 제공하고자 본 실험을 수행하였다. 실험구는 각각 0 (대조구), 100, 300 및 500ppm으로 설정하였으며, 1시간 약욕처리 후 순환시켜 0, 1 및 3시간 후에 혈액성상을 분석하였다. 혈액 중 hematocrit(Ht)수치는 전 실험구에서 감소하는 경향을 보였으나 유의한 차이는 나타나지 않았다. Red blood cell (RBC)는 농도 의존적으로 감소하는 경향을 나타내었다. 또한, 혈청 글루코오스 농도는 농도 의존적으로 증가되는 경향을 나타내었으나, 노출 이후 3시간 경과 후에는 이전 대조구 수준으로 감소되었다. 혈중 단백질량은 0시간째 전 실험구에서 감소되었다가 이후 증가하는 경향을 나타내었으나, 처리전의 대조구와 비교하여 유의하게 낮은 값을 나타내었다. SOD 효소 활성은 노출 직후 300 및 500ppm에서는 유의하게 높은 값을 나타내었다. CAT효소활성은 OTC처리 농도에 비례하여 감소하는 경향을 보였으나 유의한 차이는 나타내지 않았다. 그리고 HSP-70의 단백질량은 100 ppm및 500 ppm처리구에서 대조구에 비해 높게 발현되는 것이 확인되었다. 그러나 HSP-70 mRNA는 다소 증가하는 경향은 보였으나, 모든 실험구에서 유의한 차이는 나타나지 않았다.

Keywords

References

  1. Abedini, S., R. Namdari and F. C. P. Law, 1998. Comparative phannacokinetics and bioavailability of oxytetracycline in rainbow trout and chinook salmon. Aquaculture, 162: 23-32 https://doi.org/10.1016/S0044-8486(97)00306-2
  2. Basha, P. S. and A. U. Rani, 2003. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol. Environ. Saf., 56: 218-221 https://doi.org/10.1016/S0147-6513(03)00028-9
  3. Cho, K. S., E. Y. Min and J. C. Kang, 2002. Changes of haematological constituents in the nile tilapia, Oreochromis niloticus exposed to HCB and PCBs. J. Korean Fish. Soc., 35(2): 110-114
  4. Costa, O. T. F., D. J. S. Ferreira, F. L. P. Mendonca and M. N. Fernandes, 2004. Susceptibility of the Amazonian fish, Colossoma macropomum (Serrasalminae), to short-tem exposure to nitrite. Aquaculture, 232: 627-636 https://doi.org/10.1016/S0044-8486(03)00524-6
  5. Dedrajas, J. R., J. Lopez-Barea and J. Deinado, 1996. Dieldrin induces perroxisomal enzymes in fish (sparusaurata). Compo Biochem. Physiol. C Pharmacol-Toxicol. Endocrinol., 115(2): 125-131 https://doi.org/10.1016/S0742-8413(96)00051-5
  6. DePaola, A., J. T. Peeler and G. E. Rodrick, 1995. Effect of oxytetracycline-medicated feed on antibiotic resistance of gram-negative bacteria in catfish ponds. Appl. Environ. MicrobioI., 61: 2335-2340
  7. Edosa, O., G. E. Thomas and C. O. Paul, 1994. Chronic effects of fonnalin on erythrocyte counts and plasma glucose of Nile tilapia, Oreochromic niloticus. Asian Fish. Sci., 7: 1-6
  8. Fasaic, K. and j. Palackova, 1990. Total protein and serum fraction values in two-year carp (Cyprinus carpio L.). Acta. Bio. lugosl. E. Ichthyol., 22: 23-30
  9. Ferraris, M., S. Radice, P. Catalani, M. Francolini, L. Marabini and E. Chiesara, 2002. Early oxidative damage in primary cultured trout hepatocytes: a time course study. Aquatic Toxicology., 59: 283-296 https://doi.org/10.1016/S0166-445X(02)00007-3
  10. Gluth, G. and W. Hanke, 1984. A comparison of physiological changes in carp, Cyprinus carpio, induced by several pollutants at sub-lethal concentration. II. The dependency on the temperature. Compo Biochem. Physiol., 796: 39-45
  11. Harbell, S. C., 1979. Studies on the pathogenesis of vibriosis in coho salmon Onchorhynchus kisutch(Walbaum). J. Fish Dis., 2: 391-404 https://doi.org/10.1111/j.1365-2761.1979.tb00391.x
  12. Haug, T. and P. A. Hals, 2000. Phannacokinetics of oxytetracycline in Arctic charr (Salvelinus alpinus L.) in freshwater at low temperature. Aquaculture, 186: 175-191 https://doi.org/10.1016/S0044-8486(99)00376-2
  13. Ito, Y. and T. Murata, 1990. Changes in glucose, protein contents and enzyme activities of serum in carp administered orally with PCB. Bull. Jap. Soc. Sci. Fish., 46(4): 465-468
  14. Jeong, H. D. and S. K. Chun, 1992. The utilization of antibiotics and the treatment of bacterial diseases in fish. J. Fish Pathol., 5(1): 37-48
  15. Junqueira, V. B. C., K Simiz, L. A. Videla and S. B. Barros, 1986. Dose-dependent study of the effects of acute lindane administration on rat liver superoxide anion production, antioxidant enzyme activities and lipid peroxidation. Toxicology., 41: 193-204 https://doi.org/10.1016/0300-483X(86)90199-X
  16. Kang, J. C. and J. H. Jee, 1999. Hemochemical changes in israel carp, Cyprinus carpio exposed to cyanide. J. Korean Fish. Soc., 32(5): 573-581
  17. Khattak, I. U. D. and M. A. Hafeez, 1996. Effect of malathion on blood parameters of the fish, Cyprinion watsoni. Pak. J. Zool., 28(1): 45-49
  18. Laemrnli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature., 227: 680-685 https://doi.org/10.1038/227680a0
  19. Landry, S. J. and L. M. Gierasch, 1994. Polypetide interactions with molecular chaperones and their relationship to invivo protein folding. Annu. Rev. Bioph. Biom., 23: 645-669 https://doi.org/10.1146/annurev.bb.23.060194.003241
  20. Lowry, O. H., N. J. Rosenbrought, A. L. Farr and R. J. Randall, 1951. Protein measurement with the Folin-phenol reagent. J. bioI. Chem., 193: 265-275
  21. MacFaddin, D. J. and D. A. Brown, 1979. Stress and chronic effects of untreated and treated bleached kraft pulpmill effluent on the biochemistry and stamina ofjuvenile coho salmon (Onchorhynchus kisutch). J. Fish. Res. Board Can., 36: 1049-1059 https://doi.org/10.1139/f79-147
  22. Marklund, S. and G. Marklund, 1974. Involvement of the superoxide anion radical in the antioxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  23. Meinertz, J. R, M. P. Gaikowski, G. R. Stehly, W. H. Gingerich and J. A. Evered, 2001. Oxytetracycline depletion from skinon fillet tissue of coho salmon fed oxytetracycline medicated feed in freshwater at temperatures less than 9$^\circ$C. Aquaculture, 198: 29-39 https://doi.org/10.1016/S0044-8486(01)00512-9
  24. Namdari, R., S. Abedini, L. Albright and F. C. P. Law, 1998. Tissue distribution and elimination of oxytetracycline in sea pen cultured chinook salmon Oncorhynchus tshawytscha and Atlantic salmon (Salmon salar L.) following medicated feed treatment. J. Appl. Aquacult., 8: 39-52
  25. Namdari, R, S. Abedini and F. C. P. Law, 1999. A comparative tissue distribution and elimination of oxytetracycline in rainbow trout, Oncorhynchus mykiss (Walbaum) and chinook salmon Oncorhynchus tshawytscha (Walbaum). Aquacult. Res., 30: 279-286 https://doi.org/10.1046/j.1365-2109.1999.00329.x
  26. Nelson, D. P. and L. A. Kiesow, 1972. Enthalpy of decomposition of hydrogen peroxide by catalase at 25$^\circ$C(with molar extinction coefficients of H$_2$O$_2$ solutions in the UV). Anal Biochem., 49: 474-478 https://doi.org/10.1016/0003-2697(72)90451-4
  27. Petersen, A. and A. Dalsgaard, 2003. Antimicrobial resistance of intestinal Aeromonas spp. and Enterococcus spp. in fish cultured in integrated broiler-fish fanns in Thailand. Aquaculture, 219: 71-82 https://doi.org/10.1016/S0044-8486(03)00018-8
  28. Rigos, G., M. Alexis, A. Andriopoulou and I. Nengas, 2002. Pharmacokinetics and tissue distribution of oxytetracycline in sea bass, Dicentrarchus labrax, at two water temperatures. Aquaculture, 210: 59-67 https://doi.org/10.1016/S0044-8486(01)00868-7
  29. Shen, H., Q. Zhang, R. Xu and G. Wang, 1997. Effects of petroleum on the sero-proteins of Tilapia mossambica. Mar. Environ. Sci., 16(1): 1-5
  30. Towbin, H., T. Stachelin and J. Gordon, 1979. Electrophoretic transfer of proteins from polyacryamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA., 76: 4350-4354 https://doi.org/10.1073/pnas.76.9.4350
  31. Uno, K, T. Aoki, R. Ueno and I. Maeda, 1997. Phannacokinetics of oxytetracycline in rainbow trout Oncorhynchus mykiss following an intravenous administration. Fish. Sci., 63: 90-93 https://doi.org/10.2331/suisan.63.90
  32. Vijayan, M. M. and T. W. Moon, 1994. The stress response and plasma disappearance of corticostreiod and glucose in a marine teleost the sea raven. Can. J. Zool., 72: 379-386 https://doi.org/10.1139/z94-054
  33. Weber, L. P. and D. M. Janz, 2001. Effect of a-naphthoflavone and dimethylbenz[a]anthracene on apoptosis and HSP70 expression in juvenile channel catfish (lctalurus punctatus) ovary. Aquat. Toxicol., 54: 39-50 https://doi.org/10.1016/S0166-445X(00)00179-X
  34. Weber, L. P., S. L. Diamond, S. M. Bandiera and D. M. Janz, 2002. Expression of HSP70 and CYP1A protein in ovary and liver of juvenile rainbow trout exposed to p-naphthoflavone. Compo Biochem. Physiol., 131(C): 387-394
  35. Wendel, A, and S. Feuerstein, 1981. Drug-induced lipid peroxidation in mice-I. Modulation by monoxygenase activity, glutathione and selenium status. Biochem. Phannacol., 30: 2513-2520 https://doi.org/10.1016/0006-2952(81)90576-1
  36. Wynn, R M., J. R. Davie, R. P. Cox and D. T. Chuang, 1994. Molecular chaperones: heat-shock proteins, foldases and matchmakers. J. Lab. Clin. Med., 124: 31-36
  37. Yamazaki, K., W. Hashimoto, K. Fujii, J. Koyama, Y. Ikeda and H. Ozaki, 1986. Hemochemical changes in carp exposed to low cadmium concentrations. Bull. Jap. Soc. Sci. Fish., 52(3): 459-466 https://doi.org/10.2331/suisan.52.459
  38. Zarate, J. and T. M. Bradley, 2003. Heat shock proteins are not sensitive indicators of hatchery stress in salmon, Aquaculture, 223: 175-187 https://doi.org/10.1016/S0044-8486(03)00160-1
  39. Zikic, R. V., A. S. Stajn, S. Z. Pavlovic, B. I. Ognjanovic and Z. S. SaiCic, 2001. Activities of superoxide dismutase and catalase in erythrocytes and plasma transaminases of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium. Physiol. Res., 50: 105-111
  40. 이우주 . 홍사석 . 조규철 . 김원준 . 홍기환 . 유경자 . 차영남 . 김경환 . 이향우, 1987. 이우주의 약리학강의. 선일문화사. pp. 530-558