DOI QR코드

DOI QR Code

Effects of Microencapsulation Using Maltodextrin and/or Cyclodextrin on Water Absorption and Bioactivity of Corn Silk Extract

말토덱스트린 또는 사이클로덱스트린을 이용한 미세캡슐화공정이 옥수수 수염 추출물의 수분흡습과 생리활성에 미치는 영향

  • Lee, In Gyeong (Department of Food Engineering, Dankook University) ;
  • Lim, Ji Eun (Department of Food Engineering, Dankook University) ;
  • Kim, Sun Lim (Crop Foundation Division National Institute of Crop Science) ;
  • Kang, Hyeon Jung (Crop Foundation Division National Institute of Crop Science) ;
  • Kim, Woo Kyoung (Department of Food Science & Nutrition, Dankook University) ;
  • Kim, Myung Hwan (Department of Food Engineering, Dankook University)
  • 이인경 (단국대학교 식품공학과) ;
  • 임지은 (단국대학교 식품공학과) ;
  • 김선림 (국립식량과학원 중부작물부) ;
  • 강현중 (국립식량과학원 중부작물부) ;
  • 김우경 (단국대학교 식품영양학과) ;
  • 김명환 (단국대학교 식품공학과)
  • Received : 2017.07.24
  • Accepted : 2017.08.14
  • Published : 2017.08.31

Abstract

The aim of this study was to evaluate the effects of microencapsulation on the water absorption, DPPH radical scavenging activity (DRSA), hydroxyl radical scavenging activity (HRSA) and tyrosinase inhibition activity (TIA) in corn silk extracts. The lowest value (0.20) of water absorption index (WAI) and the highest value (95.23%) of water solubility index (WSI) were maltodextrin+cyclodextrin microencapulated corn silk extracts (MD+CD) and cyclodextrin encapulated corn silk extracts (CD), respectively. The 18.60% for DRSA value of control was increased to 89.25% for that of CD. The 16.89% for HRSA value of control was increased to 47.46%, and 7.16% for TIA value of control was increased to 39.35% for that of MD+CD, respectively. The MD+CD would be used for functional food and cosmetics materials as antioxidant and skin whitening agents. All investigated responses between control and treatment were statistically significant (p<0.05).

본 연구는 옥수수 수염 추출물을 핵물질로 사용하였고 피복물질로는 maltodextrin (MD), cyclodextrin (CD), MD와 CD를 1:1(w/w)로 혼합한(MD+CD) 세 가지 피복물질을 이용하여 미세캡슐화 하였을 때 흡습제어, DPPH radical 소거능(DRSA), hydroxyl radical 소거능(HRSA) 및 tyrosinase 저해활성(TIA)의 향상 정도를 비교 분석하였다. 대조구의 WAI 값은 0.68로 가장 높은 지수를 보였으며 처리구의 경우는 MD+CD 처리구가 0.20으로 가장 낮게 나타내었다. 이러한 현상은 피복물질에 의한 유리전이온도 상승과 같은 수분함량에서의 수분활성도 증가에 기인되기 때문이다. WSI에서는 대조구가 72.23%로 가장 낮은 지수를 나타내었으며 CD 처리구가 95.23%로 가장 높은 지수를 나타내었으며 피복물질의 수분용해도 및 미세캡슐화 과정에서의 입자크기감소가 주요원인이다. DRSA의 경우 대조구는 18.60%로 가장 낮았으며 CD 처리구에서는 89.25%이었고 HRSA는 대조구의 경우 16.89%인 반면 MD+CD 처리구는 47.64%로 나타났다. TIA에서는 대조구는 7.16%로 낮은 활성을 보인 반면 MD 처리구가 40.42%로 가장 높은 활성을 보였다. 이와 같은 생리활성도 향상은 수분용해도와 비표면적 증가에 기인되었기 때문이다. 모든 분석 치에서 대조구와 처리구간에 유의성차이를 보였다(p<0.05).

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Aceituno-Medina M, Mendoza S, Rodriguez BA, Lagaron JM, Lopez-Rubio A. 2015. Improved antioxidant capacity of quercetin and ferulic acid during in vitro digestion through encapsulation within food-grade electrospun fibers. J. Funct. Foods 12: 332-341. https://doi.org/10.1016/j.jff.2014.11.028
  2. Aguilera JM, Valle JM, Karel M. 1995. Caking phenomena in amorphous food powder. Trends Food Sci. & Technol. 6: 149-155. https://doi.org/10.1016/S0924-2244(00)89023-8
  3. Anjani K, Kailasapathy K, Philips M. 2007. Microencapsulation of enzymes for potential application in acceleration of cheese ripening. Int. Dairy J. 17: 79-86. https://doi.org/10.1016/j.idairyj.2006.01.005
  4. Augustin MA, Sanguuansri L, Margetts C, Young B. 2001. Microencapsulation of food ingredients. Food Aust. 53: 220-223.
  5. Betz M, Kulozik U. 2011. Microencapsulation of bioactive bilberry anthocyanins by means of whey protein gels. Procedia Food Sci. 1: 2047-2056. https://doi.org/10.1016/j.profoo.2011.10.006
  6. Cabanes JS, Chazarra S, Garcia-Carmona F. 1994. Kojic acid, a cosmetic skin whitening agent, is a slow binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46: 982-985. https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  7. Cha KH, Yang JS, Yeon SH, Hong JH, Kim MS, Kim JS, Hwang SJ. 2007. Microencapsulation of fish oil by spray drying using different wall materials. J. Kor. Pharm. Sci. 37: 113-117.
  8. Chae HY, Hong JH. 2016. Quality characteristics of spray-dried powder from purple sweet potato extract. J. Chitin Chitosan 21: 271-277. https://doi.org/10.17642/jcc.21.4.8
  9. Chaiittianan R, Chayopas P, Rattanathongkom A, Tippayawat P, Sutthanut K. 2016. Anti-obesity potential of corn silk: Relationships of phytochemicals and antioxidation, anti-pre-adipocyte proliferation, anti-adipogenesis, and lipolysis induction. J. Funct. Food 23: 497-510. https://doi.org/10.1016/j.jff.2016.03.010
  10. Champagne CP, Fustier P. 2007. Microencapsulation for the improved delivery of bioactive compounds into foods. Curr. Opin. Biotech. 18: 184-190. https://doi.org/10.1016/j.copbio.2007.03.001
  11. Chen S, Chen H, Tian J, Wang J, Wang Y, Xing L. 2014. Enzymolysis-ultrasonic assisted extraction: chemical characteristics and bioactivities of polysaccharides from corn silk. Carbohyd. Polym. 101: 332-341. https://doi.org/10.1016/j.carbpol.2013.09.046
  12. Choi DJ, Kim SL, Choi JW, Park YI. 2014. Neuroprotective effects of corn silk maysin via inhibition of $H_2O_2^-$ induced apoptotic cell death in SK-N-MC cells. Life Sci. 109: 57-64. https://doi.org/10.1016/j.lfs.2014.05.020
  13. Ebrahimzadeh MA, Pourmorad F, Hafezi S. 2008. Antioxidant activities of Iranian corn silk. Turk. J. Biol. 32: 43-49.
  14. Ephrem E, Elaissari H, Greige-Gerges H. 2017. Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge. Int. J. Pharm. 526: 50-68. https://doi.org/10.1016/j.ijpharm.2017.04.020
  15. Estevinho BN, Rocha F, Santos L, Alves A. 2013. Microencapsulation with chitosan by spray drying for industry applications-A review. Trends in Food Sci. & Technol. 31: 138-155. https://doi.org/10.1016/j.tifs.2013.04.001
  16. Gomez-Estaca J, Balaguer MP, Lopez-Carballo G, Gavara R, Hernandez-Munoz P. 2017. Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydronamic atomization. Food Hydrocolloid. 70: 313-320. https://doi.org/10.1016/j.foodhyd.2017.04.019
  17. Guo J, Liu T, Han L, Liu Y. 2009. The effects of corn silk on glycemic metabolism. Nutr. Metab. 6: 47-52. https://doi.org/10.1186/1743-7075-6-47
  18. Halliwell B, Gutteridge JM, Aruoma OI. 1987. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165: 215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  19. Hong EM, Yu MG, Noh BS, Chang PS. 2002. Optimization of onion oil microencapsulation by response surface methodology. Korean J. Food Sci. Technol. 34: 437-443.
  20. Hu QL, Zhang LJ, Li YN, Ding YJ, Li FL. 2010. Purification and anti-fatigue activity of flavonoids from corn silk. I. J. Phys. Sci. 5: 321-326.
  21. Jafari SM, Ghalenoei MG, Dehnad D. 2017. Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol. 311: 59-65. https://doi.org/10.1016/j.powtec.2017.01.070
  22. Kfoury M, Landy D, Ruellan S, Auezova L, Gerges H, Fourmentin S. 2017. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability. Food Chem. 236: 41-48. https://doi.org/10.1016/j.foodchem.2016.12.086
  23. Kim KA, Choi SK, Choi HS. 2004. Corn silk induces nitric oxide synthase in murine macrophages. Exp. Mol. Med. 36: 545-550. https://doi.org/10.1038/emm.2004.69
  24. Konno A, Misaki M, Toda J, Wada T, Yasumatsu K. 1982. Bitterness reduction of naringin and limonin by ${\beta}$-cyclodextrin. Agr. Biol. Chem. Tokyo 46: 2203-2208.
  25. Krishnan S, Kshiragar AC, Singghal RS. 2005. The use of gum arabic and modified starch in the microencapsulation of a food flavoring agent. Carbohyd. Polym. 62: 309-315. https://doi.org/10.1016/j.carbpol.2005.03.020
  26. Kwon SC, Jeon TW, Park JS, Kwak JS and Kim TY. 2012. Inhibitory effect on tyrosinasem ACE and xanthine oxidase, and nitrite scavenging activities of Jubak (alcohol filter cake) extracts. J. Korean Soc. Food Sci. Nutr. 41: 1191-1196. https://doi.org/10.3746/jkfn.2012.41.9.1191
  27. Mahdijafari S, Ghalenoei MG, Dehnad D. 2017. Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol. 311: 59-65. https://doi.org/10.1016/j.powtec.2017.01.070
  28. Nesterenko A, Alric I, Silvestre F, Durrieu V. 2012. Influence of soy protein's structural modifications on their properties: ${\alpha}$-tocopherol microparticles preparation. Food Res. Int. 48: 387-396. https://doi.org/10.1016/j.foodres.2012.04.023
  29. Peterson AHJ, Brockel U. 2015. Caking development in lemon juice powder. Procedia Eng. 102: 142-149. https://doi.org/10.1016/j.proeng.2015.01.117
  30. Phillips RD, Chinnan MS, Granch AL, Miller J, Mcwatters KH. 1988. Effects of pretreatment on functional and nutritional properties of cowpea meal. J. Food Sci. 53: 805-809. https://doi.org/10.1111/j.1365-2621.1988.tb08959.x
  31. Sarepoua E, Tangwongchai R, Suriharn B and Lertrat K. 2013. Relationship between phytochemicals and antioxidant activity in corn silk. Int. Food Res. J. 20(5): 2073-2079.
  32. Shi G, Rao L, Yu H, Xiang YH, Pen G, Long S, Yang C. 2007. Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. J. Food Eng. 80: 1060-1067. https://doi.org/10.1016/j.jfoodeng.2006.06.038
  33. Yang J, Li X, Xue Y, Wang N, Liu W. 2014. Anti-hepatoma activity and mechanism of corn silk polyssacharides in H22 tumor-bearing mice. J. Biol. Macromolecules 64: 276-280. https://doi.org/10.1016/j.ijbiomac.2013.11.033
  34. Yoshino M, Murakami K. 1998. Interaction of iron with polyphenolic compounds application to antioxidant characterization. Anal. Biochem. 257: 40-44. https://doi.org/10.1006/abio.1997.2522
  35. Zilic S, Jankovic M, Basic Z, Vancetovic J, Maksimovic V. 2016. Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L): Comparison with medicinal herbs. J. Cereal Sci. 69: 363-370. https://doi.org/10.1016/j.jcs.2016.05.003