Browse > Article
http://dx.doi.org/10.5660/KJWS.2010.30.2.111

Mechanism of Protoporphyrinogen Oxidase-inhibiting Herbicide, Oxyfluorfen Tolerance in Squash leaves of Various Ages  

Kuk, Yong-In (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University)
Yun, Young-Beom (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University)
Publication Information
Korean Journal of Weed Science / v.30, no.2, 2010 , pp. 111-121 More about this Journal
Abstract
Differential tolerance to protoporphyrinogen oxidase (Protox)-inhibiting herbicides, oxyfluorfen was observed between leaf ages in squash. Physiological responses to oxyfluorfen, including leaf injury, cellular leakage, accumulation of tetrapyrroles, and antioxidative enzymes activity, were investigated in leaf age classes of squash to identify mechanisms of oxyfluorfen tolerance. Leaf 1, 2, and 3 injuries for Joongangaehobak were >10,000, 1,286, and 1.6-fold higher than that of leaf 4, after treatment of oxyfluorfen. On the other hand, leaf 1, 2, and 3 injuries for Sintowjahobak were 725, 366, and >0.6-fold higher than that of leaf 4, after treatment of oxyfluorfen. However, in contrast to oxyfluorfen treatment results, leaf injury of squash leaf 4 treated with paraquat was much smaller than in leaves 1, 2 and 3. Electrolyte leakage from the tissues treated with oxyfluorfen was higher in the youngest leaf (Leaf 4) than in the older leaves 1, 2, and 3. Differential leaf response to oxyfluorfen of squash appears to be due in large part to differences in protoporphyrin IX (Proto IX), Mg-Proto IX, and Mg-Proto IX monomethyl ester accumulation in treated leaves. In contrast, leaf 4 had higher activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase than leaf 1 after treatment with oxyfluorfen. However, the induction in antioxidant activity in leaf 4 was not enough to overcome the toxic effects of a Protox inhibitor, oxyfluorfen, so the leaf eventually died.
Keywords
antioxidative enzymes; leaf age; oxidative stress; oxyfluorfen; paraquat; protoporhyrinogen oxidase; squash;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Witkowski, O. A., and B. P. Halling. 1989. inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol. 90: 1239-1242.   DOI
2 Matsumoto, H., S. Kojima and K. Ishizuka. 1990. Characteristics of herbicidal injury by diphenylether herbicides oxyfluorfen and bifenox in Lemna pausicostata Hegelm. 6746. J. Agric. Food Chem. 38:2066-2071.   DOI
3 Mishra, N. P., R. K. Mishra and G. S. Singhal. 1993. Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves of strong visible light at different temperature in the presence of protein synthesis inhibitors. Plant Physiol. 102:903-910.   DOI
4 Pereira, J. F., W. F. Splittstoesser and H. J. Hopen. 1971. Mechanism of intra-specific selectivity of cabbage to nitrofen. Weed Sci. 19:647-655.
5 Rao, M. V., G. Paliyath and D. P. Onnrod. 1996. Ultraviolet-B- and ozone-induced biochemical changes in anlioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110: 125-136.   DOI
6 Ricotta, J. A., and J. B. Masiunas. 1992. Relationship of leaf surface characteristics to acifluorfen tolerance in tomato (Lycopersicon esculentum) and related species. Weed Sci. 40:402-407.
7 Scalia, R., and M. Matringe. 1994. Inhibitors of proloporphyrinogen oxidase as herbicides: Diphenyl ethers and related photobleaching molecules. Rev. Weed Sci. 6:103-132.
8 Sherman, T. D., J. M. Becerril, H. Matsumoto, M. V. Duke, J. M. Jacobs, N. J. Jacobs and S. O.Duke. 1991 . Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidase-inhibiting herbicides. Plant Phsiol. 97: 280-287.   DOI
9 Spychalla, J. P., and S. L. Desborogh. 1990. Superoxide dismutase, catalase, and ${\alpha}-tocopherol$ content of stored potato tubers. Plant Physiol. 94:1214-1218.   DOI
10 Wilkinson, R. E. 1980. Ecotype variation of tamarix pentandra epicuticular wax and possible relationship with herbicide sensitivity. Weed Sci. 28:110-113.
11 Guh, J. O., K. lshizuka and J. Y. Pyon. 1988. Differential absorption and translocation of oxyfluorfen between selected rice cultivars. Korean J. Weed Sci. 8:37-44.
12 Komives, T., and G. Gullner. 1994. Mechanism of plant tolerance to photodynamic herbicides. Amer. Chem. Soc. Symp. Ser. 559:177-190.
13 Haworth, P., and F. D. Hess. 1988. The generation of singlet oxygen ($^1O_2$) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis. Plant Physiol. 86:672-676.   DOI
14 Jacobs, J. M. , and N. J. Jacobs. 1993. Porphyrin accumulation and export by isolated barley (Hordeum vulgare L.) plastids : Effect of diphenyl ether herbicides. Plant Physiol. 101 : 1181-1187.   DOI
15 Jacobs, J. M., N. J. Jacobs and S. O. Duke. 1996. Protoporphyrinogen destruction by plant extracts and correlation with tolerance to protoporphyrinogen oxidase-inhibiting herbicides. Pestic. Biochem. Physiol. 55:77-83.   DOI
16 Kuk, Y. I., J. S. Shin, H. I. Jung, J. O. Guh, S. Jung and N. R. Burgos. 2006. Mechanism of paraquat tolerance in cucumber leaves of various ages. Weed Sci. 54:6-15.   DOI
17 Lee, H. J., and S. O. Duke. 1994. Protoporphyrinogen IX -oxidizing activities involved in the mode of action of peroxidizing herbicides. J. Agric. Food Chem. 42:2610-2618.   DOI
18 Lee, J. J., H. Matswooto and K. Ishizuka. 1992. Light involvemem in oxyfluorfen-induced protoporphyrin IX accumulation in several species of iniaci plams. Pestic. Biochem. Physiol. 44:119-125.   DOI
19 Lermontova, I., and B. Grimm. 2000. Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol. 122:75-83.   DOI
20 Matringe, M., J. M. Camadro, P. Labbe and R. Scalia. 1989. Protoporphyrinogen oxidase as a molecular target of diphenyl ether herbicides. Biochem. J. 260:231-235.   DOI
21 Chun, J. C., H. J. Lee, S. J. Lim, S. E. Kim and J. O. Guh. 2001. Comparative absorplion, translocation, and metabolism of foliar-applied oxyfluorfen in wheat and barley. Pestic. Biochem. Physiol. 70: 118-125.   DOI
22 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein-dye binding. Anal Biochem. 72:248-254.   DOI   ScienceOn
23 Chen, G. X., and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular propenies. Plant Cell Physiol. 30:987-998.
24 Choi, J. S., H. J. Lee, I. T. Hwang, J. Y. Pyon and K. Y. Cho. 1999. Differential susceptibilities of wheat and barley to diphenyl ether herbicide oxyfluorfen. Pestic. Biochem. Physiol. 65:62-72.   DOI
25 Donahue, J. L., C. M. Okpodu, C. L. Cramer, E. A. Grabau and R. G. Alscher. 1997. Responses of antioxidants to paraquat in pea leaves: Relationships to resistance. Plant Physiol. 113:249-257.   DOI
26 Duke, S. O., J. Lydon, J. M. Becerril, T. D. Shennan, L. P. Lehnen and H. Matsumoto. 1991. Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 39:465-473.
27 Eastin, E. F. 1971. Fate of fluorodifen in resistant peanut seedlings. Weed Sci. 19:262-265.
28 Egley, G. H, R. N., Paul Jr, K. C. Vaughn and S. O. Duke. 1983. Role of peroxidase in the development of water-impenneable seed coats in Sida spinosa L. Plants. 157:224-232.   DOI   ScienceOn
29 Finckh, B. F., and K. J. Kunert. 1985. Vitamins C and E : An antioxidative system against herbicide-induced lipid peroxidation in higher plants. J. Agric. Food Chem. 33:574-577.   DOI
30 Frear, D. S., H. R. Swanson and E. R. Mansager. 1983. Acifluorfen metabolism in soybean: Diphenylether bond cleavage and the fonnation of homoglutathione, cysteine, and glucose conjugates. Pestic. Biochem. Physiol. 20:299-310.   DOI
31 구자옥, 국용인. 1997. Protoporphyrinogen oxidase 저해형 제초제에 대한 밀(Tritcum aestivum L.)과 보리(Hordeum vuigare L.)의 특이반옹 작용 기작. I. 흡수 및 해부학적 차이. 한국작물학회지 42: 68-78.
32 국용인, 구자옥. 1996. Proloporphyrinogen oxidase 저해형 Oxyfluorfen에 대한 식물종간 내성차이. 한국환경농학회지 15:316-324.
33 국용인, 구자옥, 전재철. 1996. Oxyfluorfen에 대한 내성 및 감수성 벼품종의 생리활성 기구 III. Protoporphyrinogen oxidase(Protox) 활성과 Protoporphyrinogen IX(PPIX) 축적. 한국잡초학회지 16:150-159.
34 국용인, 구자옥. 1997. Protoporphyrinogen oxidase 저해형 제초제에 대한 밀(Tritcum aestivum L.)과 보리 (Hordeum vulgare L.)의 특이반응 작용 기작 II. Protoporphyrin IX 축적 및 항산화 방어계 차이. 한국작물학회지 42:79-88.
35 국용인, 신지산, 정정성, 권오도, 김동관, 한욱수, 구지옥. 2003. Proloporphyrinogen oxidase 저해형 제초제와 Paraqual에 대한 담배 엽령별 내성차이와 기작. 한국잡초학회지 23: 100-111.
36 손민. 2007. 밀과 보리의 엽위별 oxyfluorfen에 대한 내성 차이. 전북대학교 석사학위논문 p. 45.
37 이희재, 신지산, 한성욱, 구자옥. 1998. Oxyfluorfen에 대한 담배의 엽령별 생리적 반응. 한국잡초학회지 18:69-75.
38 Becerril, J. M., and S. O. Duke. 1989. Protoporhyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol. 90: 1175-1181.   DOI
39 최성환, 김노열, 이증주. 1996. Diphenyl ether계 제초제 Oxyfluorfen에 대한 벼 품종간 저항성기구. 한국잡초학회지 16:362-371.